

Learning Docker

Second Edition

Faster app development and deployment with Docker
containers

Jeeva S. Chelladhurai
Vinod Singh
Pethuru Raj

BIRMINGHAM - MUMBAI

Learning Docker

Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Second edition: May 2017

Production reference: 1290517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-292-3

www.packtpub.com

Credits

Authors
Jeeva S. Chelladhurai
Vinod Singh
Pethuru Raj

Copy Editor
Tom Jacob

Reviewer
Werner Dijkerman

Project Coordinator
Kinjal Bari

Commissioning Editor
Kartikey Pandey

Proofreader
Safis Editing

Acquisition Editor
Prachi Bisht

Indexer
Mariammal Chettiyar

Content Development Editor
Radhika Atitkar

Graphics
Kirk D'Penha

Technical Editor
Bhagyashree Rai

Production Coordinator
Melwyn Dsa

About the Authors
Jeeva S. Chelladhurai has been working as a DevOps specialist at the IBM Global Cloud
Center of Excellence (CoE) in India for the past 8 years. He has more than 20 years of
experience in the IT industry. In various capacities, he has technically managed and
mentored diverse teams across the globe in envisaging and building pioneering
telecommunication products. He specializes in DevOps and cloud solution delivery, with a
focus on data center optimization, Software-defined Environments (SDEs), and distributed
application development, deployment, and delivery using the newest Docker technology.
Jeeva is also a strong proponent of agile methodologies, DevOps, and IT automation. He
holds a master's degree in computer science from Manonmaniam Sundaranar University
and a graduate certificate in project management from Boston University. He has been
instrumental in crafting reusable assets for IBM solution architects and consultants in
Docker-inspired containerization technology. He can be reached at his LinkedIn page:
h t t p s ://w w w . l i n k e d i n . c o m /i n /J e e v a C h e l l a d h u r a i

Vinod Singh held various positions across development, architecture, and engagement
with clients throughout his career.

Currently, he is a senior cloud architect with IBM's cloud flagship offering Bluemix,
supporting customers across the world. Vinod's experience with networking and data
communication spans software design, development, and testing. The cloud, cognitive
computing, and Linux are his passions, and he feels cognitive computing is once again
going to change the world.

Vinod is a regular speaker at IBM's internal conferences, IEEE conferences, and technology
meetups. Vinod's latest day job revolves around IBM Bluemix, Kubernetes, Docker, IBM
Watson and Amazon AWS. He can be reached at LinkedIn page:
h t t p s ://w w w . l i n k e d i n . c o m /i n /v i n o d - s i n g h - 687b 43/ and Twitter @1vinodsingh.

Vinod acknowledges his wife for extraordinary support at home that enables him to run
extra mile in professional life.

Pethuru Raj, PhD, has been working as the chief architect in Reliance Jio Cloud and
previously worked as a cloud infrastructure architect in the IBM Global Cloud Center of
Excellence (CoE), IBM India, Bangalore for four years. Prior to that, he worked as TOGAF-
certified enterprise architecture (EA) consultant in Wipro Consulting Services (WCS)
Division. He also had a fruitful stint as a lead architect in the corporate research (CR)
division of Robert Bosch, Bangalore. He has gained more than 17 years of IT industry
experience and 8 years of research experience.

He finished the CSIR-sponsored PhD degree in Anna University, Chennai and continued
the UGC-sponsored postdoctoral research in the department of Computer Science and
Automation, Indian Institute of Science, Bangalore. Thereafter, he was granted a couple of
international research fellowships (JSPS and JST) to work as a research scientist for 3.5 years
in two leading Japanese universities. He has published more than 30 research papers in
peer-reviewed journals such as IEEE, ACM, Springer-Verlag, and Inderscience. He has
authored 7 books thus far and he focuses on some of the emerging technologies such as:

Software-defined Cloud Environments (SDCEs)
Big, Fast, Streaming and IoT Data Analytics
DevOps through Docker-enabled Containerization
Microservices Architecture (MSA)
Context-aware Computing
Edge / Fog and Cognitive Analytics
Blockchain Technology for IoT Data and Device Security
Smarter Cities Technologies and Tools

Home page: www.peterindia.net
LinkedIn profile: h t t p s ://w w w . l i n k e d i n . c o m /i n /p e t e r i n d i a

He gives all honor and glory to the Lord and Savior Jesus Christ.

About the Reviewer
Werner Dijkerman is a system engineer from the Netherlands. He has more than 10 years
of experience in IT operations departments in different organizations. He started working
with a leading online retailer in the Netherlands and continued in one of the leading
software companies for general practitioners. He now works for iWelcome, the only
established IDaaS provider in Europe.

Having experience as a Windows and Linux admin, he also knows his way around Java
application servers such as Tomcat and JBoss, (No)SQL databases, and monitoring systems.
He is very busy with maintaining several free available Docker containers. Finding new
ways to monitor Docker, orchestrate containers, and testing containers before it is used on
production environments.

He was also a technical reviewer on the book Zabbix Network Monitoring, Second Edition, also
available from Packt Publishing.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786462923.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Getting Started with Docker 8

The key drivers for Dockerization 9
Differentiating between containerization and virtualization 11

The latest additions to the Docker platform 13
Windows containers 14

Installing the Docker Engine 16
Installing Docker on Ubuntu 16
Installing Docker using an automated script 18
Installing Docker on the Mac 18
Installing Docker on Windows 21

Understanding the Docker setup 23
Client-server communication 25

Downloading the first Docker image 25
Running the first Docker container 26

Troubleshooting Docker containers 26
Summary 27

Chapter 2: Handling Docker Containers 28

Clarifying Docker terms 28
Docker images 29
Docker containers 30
Docker Registry 31

Working with Docker images 32
The Docker Hub 34
Searching Docker images 35

Working with an interactive container 37
Tracking changes inside containers 39
Controlling Docker containers 41
Housekeeping containers 44
Building images from containers 46
Launching a container as a daemon 48

Summary 49

Chapter 3: Building Images 50

[ii]

Docker's integrated image building system 50
A quick overview of the Dockerfile's syntax 53

The comment line 54
The parser directives 54

The Dockerfile build instructions 55
The FROM instruction 55
The MAINTAINER instruction 56
The COPY instruction 57
The ADD instruction 57
The ENV instruction 59
The ARG instruction 59
The environment variables 60
The USER instruction 60
The WORKDIR instruction 61
The VOLUME instruction 61
The EXPOSE instruction 62
The LABEL instruction 62
The RUN instruction 63
The CMD instruction 65
The ENTRYPOINT instruction 67
The HEALTHCHECK instruction 69
The ONBUILD instruction 70
The STOPSIGNAL instruction 70
The SHELL instruction 71
The .dockerignore file 71

A brief on the Docker image management 72
Best practices for writing a Dockerfile 74
Summary 74

Chapter 4: Publishing Images 75

Understanding Docker Hub 76
Pushing images to Docker Hub 79
Automating the build process for images 86
Private repositories on Docker Hub 89
Organizations and teams on Docker Hub 91
The REST API for Docker Hub 92
Summary 94

Chapter 5: Running Your Private Docker Infrastructure 95

Docker Registry 96

[iii]

Docker Registry use cases 99
Running Docker Registry and pushing the image 101
Running the Docker Registry on localhost with an SSL certificate 104
Running Docker Registry with restrictions 107
Managing Docker Registry with Docker Compose 108
Load balancing consideration 109
Webhook notifications 110
Docker Registry HTTP API support 111
Summary 115

Chapter 6: Running Services in a Container 116

A brief overview of container networking 117
Envisaging container as a service 123

Building an HTTP server image 123
Running the HTTP server image as a service 125
Connecting to the HTTP service 126

Exposing container services 127
Publishing a container's port – the -p option 128
NAT for containers 129
Retrieving the container port 130
Binding a container to a specific IP address 132
Autogenerating the Docker host port 133
Port binding using EXPOSE and -P option 135

Summary 138

Chapter 7: Sharing Data with Containers 139

Data volume 140
The volume management command 144
Sharing host data 145

The practicality of host data sharing 150
Sharing data between containers 152

Data-only containers 152
Mounting data volume from other containers 153
The practicality of data sharing between containers 155

Avoiding common pitfalls 158
Directory leaks 158
The undesirable effect of data volume 159

Summary 161

Chapter 8: Orchestrating Containers 162

Docker inbuilt service discovery 163

[iv]

Linking containers 165
Orchestration of containers 173

Orchestrating containers using docker-compose 176
Installing docker-compose 176
The docker-compose file 178
The docker-compose command 180
Common usage 181

Summary 187

Chapter 9: Testing with Docker 188

A brief overview of TDD 189
Testing your code inside Docker 189

Running the test inside a container 194
Using a Docker container as a runtime environment 196

Integrating Docker testing into Jenkins 198
Preparing the Jenkins environment 198
Automating the Docker testing process 203

Summary 209

Chapter 10: Debugging Containers 211

Process-level isolation for Docker containers 212
Control groups 216
Debugging a containerized application 217

The docker exec command 218
The docker ps command 219
The docker top command 220
The docker stats command 221
The Docker events command 221
The docker logs command 222
The docker attach command 222
Debugging a Dockerfile 223
Summary 225

Chapter 11: Securing Docker Containers 226

The security scenario in the containerization domain 226
The security ramifications of Docker containers 228
The security facets – virtual machines versus Docker containers 229
The prominent security-fulfilment features of containers 232

Immutable infrastructure 233
Resource isolation 233

Resource accounting and control 234

[v]

The root privilege – impacts and best practices 235
The trusted user control 235

Non-root containers 235
SELinux for container security 237

Loading the Docker images and the security implications 239
Image signing and verification using TUF 241
The emerging security approaches 242

The best practices for container security 243
Secure deployment guidelines for Docker containers 246
The future of Docker security 247

Summary 248

Chapter 12: The Docker Platform – Distinct Capabilities and Use Cases 249

Describing containers 250
Distinguishing Docker containers 250

Briefing the Docker platform 253
The evolving Docker platform components 254

Implications of the Docker technology 255
Modern enterprise development 255
MSA and Docker containers 256

Case study 257
Infrastructure optimization 258

Case study 259
Enabling DevOps 259
Continuous integration and continuous deployment 260
Continuous delivery 261

Accurate testing 262
Facilitating CaaS 262

Accelerating workload modernization 263
Docker for stateful applications 264
Containers for edge computing 264

Devices networking, service enablement, and clustering 265
Device service registry for discovery 265
Fault tolerance 266
Caching 266

The Docker use cases 266
Integrating containers into workflows 267
Docker for HPC and TC applications 267

Containers for telecom applications 268
Summary 269

Index 270

Preface
There are several technical and business advantages associated with Docker. The
longstanding goals of application development, deployment, and delivery automation are
accomplished through Docker-enabled containerization, which is being touted as a crucial
automation method for the tremendous success of the cloud paradigm. Existing workloads
are containerized and cloud-enabled to be stocked in public as well as private repositories.
Both business and IT workloads can be easily pampered, packaged, and presented as
remotely discoverable, usable, portable, and composable containers. Further on, containers
are shipped and run everywhere without any hassle, hitches, and hurdles. The
containerization concept has made IT infrastructures and processes agile and adaptive. This
means that not only is software engineering sped up, but also the tasks of software
configuration, deployment, and delivery are accelerated. Precisely speaking, the unique
goals of DevOps are accomplished through the smart use of containers.

Beside a litany of Docker-centric solutions, there is a growing family of third-party tools to
make embracing and enabling Docker risk-free, easier, and faster. There are powerful case
studies and real-world deployments clearly illustrating that Docker consistently contributes
to establishing and sustaining IT environments in minutes rather than in months. The other
noteworthy advancements brought by the Docker paradigm include the real-time
scalability of application infrastructures and the improved utilization of IT resources
brought about by having several application containers within any Docker host. There are
container cluster management platforms for efficient container scheduling, and
orchestration for quickly producing and sustaining multihost, multicontainer, and
microservices-centric distributed applications.

The role and responsibility of the widely deliberated Docker technology in ensuring event-
driven, service-oriented, insights-filled, context-aware, cloud-hosted, business-centric, and
mission-critical applications is enchanting really and is well articulated in this new edition
of the book, in order to adequately empower our readers with all the relevant details of the
most popular Docker paradigm.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Docker, talks about the various distinctions of the open-
source Docker platform and how it simplifies and speeds up the process of realizing
containerized workloads to be readily deployed and run on a variety of operating systems,
bare metal servers, and virtual machines. This chapter also has step-by-step details on
installing the Docker Engine, downloading a Docker image from the centralized Docker
Hub, creating a Docker container out of that image, and troubleshooting the Docker
container.

Chapter 2, Handling Docker Containers, is dedicated to clearly explaining the various
commands required to manage Docker images and containers. This chapter provides the
basic Docker terminologies needed to understand the output of Docker commands. Other
details covered here include starting an interactive session inside a container, managing
your images, running containers, and tracking changes inside containers.

Chapter 3, Building Images, describes how Docker images are built. There are several ways
and means through which Docker images are built and stored. The other important topics
covered in this chapter include a quick overview of a Dockerfile's syntax and a bit of
theoretical information on how Docker stores images.

Chapter 4, Publishing Images, tells you everything about publishing images on the
centralized Docker Hub and how to get the most out of Docker Hub. The other important
contents in the chapter include more details about Docker Hub, how to push images to
Docker Hub, the automatic building of images, how to create organizations on Docker Hub,
and finally private repositories.

Chapter 5, Running Your Private Docker Infrastructure, explains how corporates can set up
and run their own private repositories. There are a few valid reasons why corporates want
to have their own repositories to host some crucial Docker images. This means that publicly
available repositories are found unsuitable for storing certain specific images. This chapter
has all the information required to set up and sustain private repositories.

Chapter 6, Running Services in a Container, illustrates how a web application can be run
inside a Docker container as a service and how to expose the service, in order for the
outside world to find and access it. How the appropriate Dockerfile is developed to simplify
this task is also described in detail.

Chapter 7, Sharing Data with Containers, shows you how to use Docker's volumes feature to
share data between the Docker host and its containers. The other topics covered here are
how to share data between containers, the common use cases, and the typical pitfalls to
avoid.

Preface

[3]

Chapter 8, Orchestrating Containers, explains how to do the orchestration of multiple
containers towards composite and containerized workloads. It is a well-known truth that
orchestration plays a major role in producing composite applications. This chapter includes
relevant details about the orchestration process and the toolset made available for enabling
the process of orchestration. Finally, you will find a well-orchestrated example of how
containers can be orchestrated to bring forth highly reusable and business-aware containers.

Chapter 9, Testing with Docker, focuses on testing your code inside Docker images. You will
also find out how to run tests inside an ad hoc Docker image. Finally, you will be given
details of how to integrate Docker testing into a continuous integration server such as
Jenkins.

Chapter 10, Debugging Containers, teaches you how to debug applications running inside
containers. How Docker ensures that processes running inside containers are isolated from
the outside world is also covered.

Chapter 11, Securing Docker Containers, explains the security and privacy challenges and
concerns, and how they are addressed through the liberal use of competent standards,
technologies, and tools. This chapter covers the mechanism for dropping user privileges
once inside an image. There is also a brief introduction to how the security capabilities
introduced in SELinux come in handy when securing Docker containers.

Chapter 12, The Docker Platform – Distinct Capabilities and Use Cases, describes how the
Docker platform is becoming an enterprise-grade method for bringing forth a variety of
distinct automation in the fields of software engineering and distributed computing. Several
industry case studies are included in this chapter in order to address any worries about
Docker and to enhance its penetration and participation.

What you need for this book
You need Ubuntu 16.04 to run the examples covered in this book.

Who this book is for
This book is ideal for developers, operations managers, and IT professionals who would
like to learn about Docker and use it to build and deploy container-based applications. No
prior knowledge of Docker is expected.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Let's
start our Docker journey with the docker version subcommand, as shown here:"

A block of code is set as follows:

FROM busybox
RUN ls -lh
CMD echo Hello world

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

FROM busybox
RUN ls -lh
CMD echo Hello world

Any command-line input or output is written as follows:

 $ sudo apt-get install -y docker-engine

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Now, clicking on the Start
using Jenkins button will take you to the Welcome to Jenkins! page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

Preface

[6]

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /L e a r n i n g - D o c k e r - S e c o n d - E d i t i o n . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /L e a r n i n g D o c k e r S e c o n d E d i t i o n _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books – maybe a mistake in the text or the code
– we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Preface

[7]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started with Docker

Docker is undeniably the most popular technology these days in the Information
Technology (IT) world. Mainly, there are two principal trends in the Docker landscape.
First, the open source Docker platform is being continuously equipped with more correct
and relevant features and functionalities in order to make it the most powerful and
pioneering IT platform, not only for software developers but also for on-premise and off-
premise IT operational teams. The second trend is the unprecedented adoption of the
Docker-inspired containerization technology by various IT service and solution providers
across the Globe in order to bring forth a growing array of premium offerings to their
consumers and clients. The enhanced simplicity in the development of fresh software
applications, the automated and accelerated deployment of Docker containers, and the
extreme maneuverability of Docker containers are being widely touted as the key
differentiators of this unique paradigm's unprecedented success.

In this chapter, we would like to shed more light on Docker, and show why it is being
touted as the latest best thing for the impending digital idea and insightful economy. We
would like to introduce you to the practical side of Docker; in this chapter, we will cover the
following topics:

The key drivers for Dockerization
Differentiating between containerization and virtualization
Installing the Docker Engine
Understanding the Docker setup
Downloading the first image
Running the first container
Troubleshooting Docker containers

Getting Started with Docker

[9]

The key drivers for Dockerization
The first and foremost driver for Docker-enabled containerization is to competently and
completely overcome the widely expressed limitations of the virtualization paradigm.
Actually, we have been working on proven virtualization techniques and tools for quite a
long time now in order to realize the much-demanded software portability. That is, with the
goal of eliminating the inhibiting dependency between software and hardware there have
been several right initiatives that include the matured and stabilized virtualization
paradigm. Virtualization is a kind of beneficial abstraction, accomplished through the
incorporation of an additional layer of indirection between hardware resources and
software components. Through this freshly introduced abstraction layer (hypervisor or
Virtual Machine Monitor (VMM)), any kind of software applications can run on any
underlying hardware without any hitch or hurdle. In short, the longstanding goal of
software portability is trying to achieve through this middleware layer. However, the
much-published portability target is not fully met even by the virtualization technique. The
hypervisor software from different vendors gets in the way of ensuring the much-needed
application portability. Further, the distribution, version, edition, and patching differences
of operating systems and application workloads hinder the smooth portability of workloads
across systems and locations.

Similarly, there are various other drawbacks attached to the virtualization paradigm. In
data centers and server farms, the virtualization technique is typically used to create
multiple Virtual Machines (VMs) out of physical machines and each VM has its own
Operating System (OS). Through this solid and sound isolation enacted through
automated tools and controlled resource-sharing, multiple and heterogeneous applications
are being accommodated in a physical machine. That is, the hardware-assisted
virtualization enables disparate applications to be run simultaneously on a single physical
server. With the virtualization paradigm, various kinds of IT infrastructure (server
machines, storage appliances, and networking solutions) become open, programmable,
remotely monitorable, manageable, and maintainable. However, because of the verbosity
and bloatedness (every VM carries its own OS), VM provisioning typically takes a few
minutes and this longer duration is not acceptable for production environments.

The other widely expressed drawback closely associated with virtualization is that the
performance of virtualized systems also goes down due to the excessive usage of precious
and expensive IT resources (processing, memory, storage, network bandwidth, and so on).
Besides the longer runtime, the execution time of VMs is on the higher side because of
multiple layers ranging from the guest OS, hypervisor, and the underlying hardware.

Getting Started with Docker

[10]

Finally, the compute virtualization has flourished, whereas the other closely associated
network and storage virtualization concepts are just taking off; precisely speaking, building
distributed applications and fulfilling varying business expectations mandate the faster and
flexible provisioning, high availability, reliability, scalability, and maneuverability of all the
participating IT resources. Computing, storage, and networking components need to work
together in accomplishing the varying IT and business needs. This sharply increments the
management complexity of virtual environments.

Enter the world of containerization. All the aforementioned barriers get resolved in a single
stroke. That is, the evolving concept of application containerization coolly and confidently
contributes to the unprecedented success of the software portability goal. A container
generally contains an application. Along with the primary application, all of its relevant
libraries, binaries, and other dependencies are stuffed and squeezed together to be
packaged and presented as a comprehensive yet compact container to be readily shipped,
run, and managed in any local as well as remote environments. Containers are
exceptionally lightweight, highly portable, rapidly deployable, extensible, and so on.
Further on, many industry leaders have come together to form a kind of consortium to
embark on a decisive journey towards the systematic production, packaging, and delivery
of industry-strength and standardized containers. This conscious and collective move
makes Docker deeply penetrative, pervasive, and persuasive. The open source community
is simultaneously spearheading the containerization conundrum through an assortment of
concerted activities for simplifying and streamlining the containerization concept. These
containerization life cycle steps are being automated through a variety of tools.

The Docker ecosystem is also growing rapidly in order to bring in as much automation as
possible in the containerization landscape. Container clustering and orchestration are
gaining a lot of ground; thus, geographically distributed containers and their clusters can be
readily linked up to produce bigger and better application-aware containers. The
distributed nature of cloud centers is, therefore, to get benefited immensely with all the
adroit advancements gaining a strong foothold in the container space. Cloud service
providers and enterprise IT environments are all set to embrace this unique technology in
order to escalate the resource utilization and to take the much-insisted infrastructure
optimization to the next level. On the performance side, plenty of tests demonstrate Docker
containers achieving native system performance. In short, IT agility through the DevOps
aspect is being guaranteed through the smart leverage of Dockerization, and this in turn
leads to business agility, adaptivity, and affordability.

Getting Started with Docker

[11]

Differentiating between containerization and
virtualization
It is pertinent, and it is paramount for extracting and expounding the game-changing
advantages of the Docker-inspired containerization movement over the widely used and
fully matured virtualization paradigm. As elucidated earlier, virtualization is the
breakthrough idea and game-changing trendsetter for the unprecedented adoption of
cloudification, which enables the paradigm of IT industrialization. However, through
innumerable real-world case studies, cloud service providers have come to the conclusion
that the virtualization technique has its own drawbacks and hence the containerization
movement took off powerfully.

Containerization has brought in strategically sound optimizations through a few crucial
and well-defined rationalizations and the insightful sharing of compute resources. Some of
the innate and hitherto underutilized capabilities of the Linux kernel have been
rediscovered. A few additional capabilities too are being embedded to strengthen the
process and applicability of containerization. These capabilities have been praised for
bringing in the much-wanted automation and acceleration, which will enable the fledgling
containerization idea to reach greater heights in the days ahead. The noteworthy business
and technical advantages of containerization include bare metal-scale performance, real-
time scalability, higher availability, IT DevOps, software portability, and so on. All the
unwanted bulges and flabs are being sagaciously eliminated to speed up the roll-out of
hundreds of application containers in seconds. The following diagram on the left-hand side
depicts the virtualization aspect, whereas the diagram on the right-hand side vividly
illustrates the simplifications that are being achieved in containers:

Type 1 Virtualization versus Containerization

Getting Started with Docker

[12]

As we all know, there are two main virtualization types. In Type 1 virtualization, the
hypervisor provides the OS functionalities plus the VM provisioning, monitoring, and
management capabilities and hence there is no need for any host OS. VMware ESXi is the
leading Type 1 virtualization hypervisor. The production environments and mission-critical
applications are run on the Type 1 virtualization.

Type 2 virtualization versus Containerization

The second one is the Type 2 virtualization, wherein the hypervisor runs on the host OS as
shown in the preceding figure. This additional layer impacts the system performance and
hence generally Type 2 virtualization is being used for development, testing, and staging
environments. The Type 2 virtualization greatly slows down the performance because of
the involvement of multiple modules during execution. Here, the arrival of Docker-enabled
containerization brings forth a huge boost to the system performance.

In summary, VMs are a time-tested and battle-hardened software stack and there are a
number of enabling tools to manage the OS and applications on it. The virtualization tool
ecosystem is consistently expanding. Applications in a VM are hidden from the host OS
through the hypervisor. However, Docker containers do not use a hypervisor to provide the
isolation. With containers, the Docker host uses the process and filesystem isolation
capabilities of the Linux kernel to guarantee the much-demanded isolation.

Getting Started with Docker

[13]

Docker containers need a reduced disk footprint as they don't include the entire OS. Setup
and startup times are therefore significantly lower than in a typical VM. The principal
container advantage is the speed with which application code can be developed, composed,
packaged, and shared widely. Containers emerge as the most prominent and dominant
platform for the speedier creation, deployment, and delivery of microservices-based
distributed applications. With containers, there is a lot of noteworthy saving of IT resources
as containers consume less memory space.

Great thinkers have come out with a nice and neat comparison between VMs and
containers. They accentuate thinking in terms of a house (VM) and an apartment complex.
The house, which has its own plumbing, electrical, heating, and protection from unwanted
visitors, is self-contained. An apartment complex has the same resources as a house, such as
electrical, plumbing, and heating, but they are shared among all the units. The individual
apartments come in various sizes and you only rent what you need, not the entire complex.
The apartment flats are containers, with the shared resources being the container host.

Developers can use simple and incremental commands to create a fixed image that is easy
to deploy and can automate building those images using a Dockerfile. Developers can
share those images easily using simple, Git-style push and pull commands to public or
private Docker registries. Since the inception of the Docker technology, there is an
unprecedented growth of third-party tools for simplifying and streamlining Docker-
enabled containerization.

The latest additions to the Docker platform
Containers are primarily presented as the next-generation application delivery platform.
Containers are bringing forth a kind of mechanism for efficiently virtualizing the OS for the
sole purpose of running applications on a single kernel host. Applications can also include
the fast-emerging microservices. The open source Docker platform is now available
primarily in two variants:

Docker Enterprise Edition (Docker EE): This is designed for enterprise
development and IT teams who build, ship, and run business-critical applications
in production at scale. Docker EE is integrated, certified, and supported to
provide enterprises with the most secure container platform in the industry to
modernize all applications.

Getting Started with Docker

[14]

Docker Community Edition (Docker CE): This is ideal for developers and small
teams looking to get started with Docker and experimenting with container-
based applications. Docker CE is available on many platforms, from desktop to
cloud to the server. Docker CE is available for macOS and Windows and provides
a native experience to help you focus on learning Docker. You can build and
share containers and automate the development pipeline, all from a single
environment.

Windows containers
Docker and Microsoft have entered into a long-lasting partnership to bring the much-
needed agility, portability, and security benefits of the Docker platform to every edition of
Windows Server 2016. Organizations that upgrade their servers to this new OS will then be
able to use containers right from the development to the production environments.
Windows uses namespace isolation, resource control, and process-isolation mechanisms to
restrict the files, network ports, and running processes that each container can access. This
isolation ensures applications running in containers can't interact with or see other
applications running on the host OS or in other containers. Microsoft includes two different
types of container. The first type is based on the Windows Server core image and is called a
Windows Server container. The second one is called a Hyper-V container and is based on
the Windows Nano Server image.

Windows Server containers share the underlying OS kernel. This architecture enables faster
startup and efficient packaging while delivering the capability to run a number of
containers per host. Containers share the local data and APIs with lower isolation levels
between each. These containers are best for homogenous applications that do not require
strong isolation and security constraints. Large microservice applications composed of
multiple containers can use Windows Server containers for performance and efficiency.

Hyper-V containers offer the best of both worlds: VMs and containers. Since each container
gets a dedicated copy of Windows kernel and memory, Hyper-V containers have better
isolation and security levels than Windows Server containers. The containers are more
secure because the interaction with the host operating system and other containers is
minimal. This limited sharing of resources also increases the startup time and the size of
packaged containers.

Getting Started with Docker

[15]

Hyper-V containers are preferred in multi-tenant environments such as public clouds. Here
is a summary of Windows container jargon with descriptions:

Container Host: Physical or VM configured with the Windows container feature.
Container Image: A container image contains the base OS, application, and all
the application dependencies that are needed to quickly deploy a container.
Container OS Image: The container OS image is the OS.
Container Registry: Container images are stored in a container registry and can
be downloaded on demand. A registry can be off- or on-premise.
Docker Engine: It is the core of the open source Docker platform. It is a
lightweight container runtime that builds and runs Docker containers.
Dockerfile: Dockerfile is used by developers to build and automate the
creation of container images. With a Dockerfile, the Docker daemon can
automatically build a container image.

Microsoft has its own public and official repository available via this URL:
https://hub.docker.com/u/microsoft/. Amazon Web Services (AWS) has begun
supporting Windows containers, providing a more direct way for older applications to
jump into the cloud.

Windows containers provide the same advantages as Linux containers for applications that
run on Windows. Windows containers support the Docker image format and Docker API.
However, they can also be managed using PowerShell. Two container runtimes are
available with Windows containers, Windows Server containers, and Hyper-V containers.
Hyper-V containers provide an additional layer of isolation by hosting each container in a
super-optimized VM.

This addresses the security concerns of running containers on top of an OS. Further, it also
enhances the container density in a compute instance. That is, by running multiple
containers in Hyper-V VMs, you can effectively take your density count to another level
and run hundreds of containers on a single host. Windows containers are just Docker
containers. Currently, you can deploy Windows containers in Windows Server 2016 (Full,
Core, or Nano Server Editions), Windows 10 (Enterprise and Professional Editions), as well
as Azure. You can deploy and manage these containers from any Docker client, including
the Windows command line when the Docker Engine is installed. You can also manage
them from PowerShell, which is open source software.

In this book, we have focused on the Docker CE.

Getting Started with Docker

[16]

Installing the Docker Engine
The Docker Engine is built on top of the Linux kernel and it extensively leverages Linux
kernel features such as namespaces and cgroups. Due to the burgeoning popularity of
Docker, it is now being packaged by all the major Linux distributions so that they can retain
their loyal users as well as attract new users. You can install the Docker Engine using the
corresponding packaging tool of the Linux distribution, for example, using the apt-get
command for Debian and Ubuntu, and the yum command for Red Hat, Fedora, and CentOS.
Alternatively, you can use the fully automated install script, which will do all the hard work
for you behind the scenes.

If you are a Mac or Microsoft Windows user, you can run Docker on Linux emulations
(VMs). There are multiple solutions available to run Docker using Linux VM, which is
explained in a later subsection. Docker and Microsoft are working towards supporting
native Windows containers to run a native Windows application, which is outside the scope
of this book.

For all practical purposes, we have chosen the Ubuntu 16.04 LTS (Xenial
Xerus) (64-bit) Linux distribution.

Installing Docker on Ubuntu
Docker is currently supported only on 64-bit architecture Linux and the Linux kernel must
be 3.10 or later. At the time of writing this book, the latest version of the Docker was
17.03.0-ce. The following steps prescribe the installation procedure of the Docker Engine on
Ubuntu Linux 16.04 in detail:

First, the best practice for installing any software in Ubuntu begins with the1.
resynchronization of the package repository. This step will essentially update the
package repository in line with the latest published packages, thus we will ensure
that we always get the latest published version using the command shown here:

 $ sudo apt-get update

Getting Started with Docker

[17]

Downloading the example code
You can download the example code files from your account at
h t t p ://w w w . p a c k t p u b . c o m for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit
h t t p ://w w w . p a c k t p u b . c o m /s u p p o r t and register to have the files e-
mailed directly to you.

Add the Docker package repository path for Ubuntu 16.04 to your APT sources,2.
as shown here:

 $ sudo sh -c "echo deb https://apt.dockerproject.org/repo \
 ubuntu-xenial main > /etc/apt/sources.list.d/docker.list"

Add the GNU Privacy Guard (GPG) key by running the following command:3.

 $ sudo apt-key adv --keyserver \
 hkp://p80.pool.sks-keyservers.net:80 --recv-keys \
 58118E89F3A912897C070ADBF76221572C52609D

Resynchronize with the package repository using the following command:4.

 $ sudo apt-get update

Install Docker and start the Docker service:5.

 $ sudo apt-get install -y docker-engine

Having installed the Docker Engine, let's verify our installation by running6.
docker --version as shown here:

 $ docker --version
 Docker version 17.03.0-ce, build 60ccb22

Hurrah!! We have successfully installed Docker version 17.03.0 community edition.

Getting Started with Docker

[18]

Installing Docker using an automated script
In the previous section, we installed the Docker Engine by manually configuring the GPG
key, APT repository, and so on. However, the Docker community has taken a step forward
by hiding all these details in an automated install script. This script enables the installation
of Docker on most popular Linux distributions, either through the curl command or
through the wget command, as shown here:

For the curl command:

 $ sudo curl -sSL https://get.docker.io/ | sh

For the wget command:

 $ sudo wget -qO- https://get.docker.io/ | sh

The preceding automated script approach enforces AUFS as the
underlying Docker filesystem because AUFS is preferred over
devicemapper. This script probes the AUFS driver, and then installs it
automatically if it is not found in the system. In addition, it also conducts
some basic tests upon installation for verifying the sanity.

Installing Docker on the Mac
On a Mac system, you can run Docker on Linux VM. Tools such as Vagrant and Docker
Toolbox are quite handy to emulate Linux on Mac and in turn run Docker on it. Docker
recently released Docker on Mac as a Beta, using the xhyve hypervisor to provide the Linux
emulation. The xhyve hypervisor virtualizes the Docker Engine environment and Linux
kernel-specific features for the Docker daemon.

It is always recommended that you use Docker for Mac for supported OS
X versions 10.10.3, Yosemite or newer.

Getting Started with Docker

[19]

The following steps describe the installation of Docker for Mac:

Download Docker for Mac from the link1.
https://download.docker.com/mac/beta/Docker.dmg.
Double-click to download Docker.dmg and move it, as shown here:2.

Getting Started with Docker

[20]

Now, double-click on Docker.app in Applications and it will install all3.
Docker components. During installation, it will ask for the machine's
administrative password to install the software.
Upon successful installation, the whale icon will appear in the top status bar:4.

Finally, verify the Docker versions:5.

 $ docker --version
 Docker version 17.03.0-ce, build 60ccb22
 $ docker-compose --version
 docker-compose version 1.11.2, build dfed245
 $ docker-machine --version
 docker-machine version 0.10.0, build 76ed2a6

Getting Started with Docker

[21]

Installing Docker on Windows
As with the Mac, on Windows, you can also run Docker on Linux VMs using tools such as
Vagrant and Docker Toolbox. Recently, Docker released a Beta version of Docker for
Windows, which uses Hyper-V to virtualize the Docker Engine and Linux kernel-specific
features that are essential to run the Docker Engine.

At the time of writing this book, Docker on Windows is supported only on 64-bit Windows
10 Enterprise and Education (1511 November update, Build 10586 or later). In the future,
Docker will support more versions of Windows 10. Be aware that the Hyper-V package
must be enabled.

It is always recommended that you use Docker native if you have a supported Windows 10
operating system. The following steps are required to install Docker on Windows:

Download the Docker for Windows installer from1.
https://download.docker.com/win/beta/InstallDocker.msi.
Double-click on InstallDocker.msi; the installation wizard will start. It will2.
ask for the Windows administrative password to complete the installation:

Getting Started with Docker

[22]

Docker starts automatically and the whale will appear in the status bar:3.

Finally, verify the Docker versions:4.

 $ docker --version
 Docker version 17.03.0-ce, build 60ccb22
 $ docker-compose --version
 docker-compose version 1.11.2, build dfed245
 $ docker-machine --version
 docker-machine version 0.10.0, build 76ed2a6

Getting Started with Docker

[23]

For other versions of Windows, you can install Docker Toolbox
from https://docs.docker.com/toolbox/overview/. The Docker Toolbox runs
Boot2Docker, a lightweight Linux VM on the Oracle VirtualBox hypervisor and installs the
Docker Engine on top of it.

Understanding the Docker setup
It is important to understand the Docker components and their versions, storage, and the
execution drivers, the file locations, and so on. Incidentally, the quest for understanding the
Docker setup will also reveal whether the installation was successful or not. You can
accomplish this using two Docker subcommands: docker version and docker info.

Let's start our Docker journey with the docker version subcommand, as shown here:

$ sudo docker version
Client:
 Version: 17.03.0-ce
 API version: 1.26
 Go version: go1.7.5
 Git commit: 60ccb22
 Built: Thu Feb 23 10:57:47 2017
 OS/Arch: linux/amd64

Server:
 Version: 17.03.0-ce
 API version: 1.26 (minimum version 1.12)
 Go version: go1.7.5
 Git commit: 60ccb22
 Built: Thu Feb 23 10:57:47 2017
 OS/Arch: linux/amd64
 Experimental: false

Although the docker version subcommand lists many lines of text, as a Docker user you
should know what these following output lines mean:

The client version
The client API version
The server version
The server API version

Here, both the client and server are of community edition 17.03.0 and the client API and the
server API of version 1.26.

Getting Started with Docker

[24]

If we dissect the internals of the docker version subcommand, then it will first list the
client-related information that is stored locally. Subsequently, it will make a REST API call
to the server over HTTP to obtain server-related details.

Learn more about the Docker environment using the docker info subcommand:

Getting Started with Docker

[25]

As you can see, in the output of a freshly installed Docker Engine, the number of
Containers and Images is invariably nil. The Storage Driver has been set up as aufs,
and the directory has been given the /var/lib/docker/aufs location. The runtime has
been set to runc. This command also lists details, such as Logging Driver, Cgroups
Driver, Kernel Version, Operating System, CPUs, and Total Memory.

Client-server communication
On Linux installations, Docker is usually programmed to carry out the server-client
communication using the Unix socket (/var/run/docker.sock). Docker also has an
IANA-registered port, which is 2375. However, for security reasons, this port is not
enabled by default.

Downloading the first Docker image
Having installed the Docker Engine successfully, the next logical step is to download the
images from the Docker Registry. The Docker Registry is an application repository that
hosts various applications, ranging from basic Linux images to advanced applications. The
docker pull subcommand is used to download any number of images from the registry.
In this section, we will download a sample hello-world image using the following
command:

$ sudo docker pull hello-world
Using default tag: latest
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest:
sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest

Once the images have been downloaded, they can be verified using the docker images
subcommand, as shown here:

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
hello-world latest 48b5124b2768 6 weeks ago 1.84 kB

Getting Started with Docker

[26]

Running the first Docker container
Now you can start your first Docker container as shown here:

Cool, isn't it? You have set up your first Docker container in no time. In the preceding
example, the docker run subcommand has been used to create a container from the
hello-world image.

Troubleshooting Docker containers
Most of the times you will not encounter any issues when installing Docker. However,
unexpected failures might occur. Therefore, it is necessary to discuss the prominent
troubleshooting techniques and tips. Let's begin by discussing troubleshooting know-how
in this section. The first tip is that Docker's running status should be checked using the
following command:

$ sudo service docker status

Getting Started with Docker

[27]

If the Docker service is up-and-running, the Active column (the third from the top) will list
the status of the Docker service as active (running), as shown next:

However, if the Active column shows inactive or maintenance as the status, your
Docker service is not running. In such cases, restart the Docker service, as shown here:

$ sudo service docker restart

If you are still experiencing issues with the Docker setup, then you must extract the Docker
log, using the journalctl -u docker command, for further investigation.

Summary
In a way, Docker containers are the lightweight, loosely-coupled, and nimble cousins of
VMs. As elucidated before, containers enable packaging an application along with all of its
dependencies compactly and shipping it elsewhere, running it smoothly in development,
test, and production environments. Docker harnesses some powerful kernel-level features
intelligently and provides a growing ecosystem of tools for realizing and running
containers in an automated fashion. The end result is a potential game-changer for
distributed application developers and system administrators. With hybrid clouds as the
toast of worldwide enterprises for their IT needs, the Docker platform is a blessing in
disguise for enterprise IT teams. Containers are typical sandboxes, isolating processes from
each other. Docker does a nice and neat job of advancing the containerization paradigm for
a slew of purposes such as lightweight packaging, frictionless shipping, faster deployment,
and more rapid delivery of software applications.

The next chapter throws more light on the operational aspects of Docker containers,
especially the sagacious handling of containers in order to produce real-world Dockerized
applications.

2
Handling Docker Containers

In the previous chapter, we explained the stimulating and sustainable concepts that clearly
articulated Docker's way of crafting futuristic and flexible application-aware containers. We
discussed all the relevant details of bringing Docker containers into multiple environments
(on-premise as well as off-premise). You can easily replicate these Docker capabilities in
your own environments to get a rewarding experience. Now, the next logical step for us is
to understand container life cycle aspects in a decisive manner. You are to learn the optimal
utilization of your own containers as well as those of other third-party containers in an
efficient and risk-free way. Containers are to be found, accessed, assessed, and leveraged
toward bigger and better distributed applications.

In this chapter, we will dig deeper and describe the critical aspects of container handling at
length. A number of practical tips and execution commands for leveraging containers will
also be discussed for the benefit of readers.

In this chapter, we will cover the following topics:

Clarifying Docker terms
Working with Docker images and containers
The meaning of the Docker Registry and its repository
The Docker Hub Registry
Searching Docker images
Working with an interactive container
Tracking changes inside the containers
Controlling and housekeeping Docker containers
Building images from containers
Launching a container as a daemon

Handling Docker Containers

[29]

Clarifying Docker terms
For substantially simplifying the understandability of this chapter and for minimizing any
kind of ambiguity, frequently used terms are explained in the following section.

Docker images
A Docker image is a collection of all the files that make up an executable software
application. This collection includes the application plus all the libraries, binaries, and other
dependencies such as the deployment descriptor, just needed to run the application
everywhere without hitch or hurdle. These files in the Docker image are read-only and
hence the content of the image cannot be altered. If you choose to alter the content of your
image, the only option Docker allows is to add another layer with the new changes. In other
words, a Docker image is made up of layers, which you can review using the docker
history subcommand, as explained in Chapter 3, Building Images.

The Docker image architecture effectively leverages this layering concept to seamlessly add
additional capabilities to the existing images in order to meet varying business
requirements and also increase the reuse of images. In other words, capabilities can be
added to the existing images by adding additional layers on top of that image and deriving
a new image. Docker images have a parent-child relationship and the bottom-most image is
called the base image. The base image is a special image that doesn't have any parent:

In the preceding diagram, ubuntu is a base image and it does not have any parent image.

Ubuntu is a Debian-based Linux operating system. The Ubuntu Docker
image is a minimalist bundle of software libraries and binaries that are
critical to run an application. It does not include the Linux kernel, device
drivers, and various other services a full-fledged Ubuntu operating system
would provide.

Handling Docker Containers

[30]

As you can see in the preceding figure, everything starts with a base image and here in this
example, it is ubuntu. Further on, the wget capability is added to the image as a layer and
the wget image is referencing the ubuntu image as its parent. In the next layer, an instance
of the Tomcat application server is added and it refers the wget image as its parent. Each
addition that is made to the original base image is stored in a separate layer (a kind of
hierarchy gets generated here to retain the original identity). Precisely speaking, any Docker
image has to originate from a base image and an image gets continuously enriched in its
functionality by getting fresh modules, and this is accomplished by adding an additional
module as a new layer on the existing Docker image one by one, as vividly illustrated in the
preceding figure.

The Docker platform provides a simple way for building new images or extending existing
images. You can also download the Docker images that other people have already created
and deposited in the Docker image repositories (private or public). Every image has a
unique ID, as explained in the following section.

Docker containers
Docker images are a read-only template of the application stack bundle and they don't have
any state associated with them. The Docker container is spun off from the Docker image
and it adds a read-write layer on top of the static image layers. If we try to draw a
comparison with the object-oriented programming paradigm, Docker images are typically
classes, whereas Docker containers are objects (instances of the classes).

Handling Docker Containers

[31]

The Docker image defines the behavior of the Docker container such as what process to run
when the container is started. In the previous chapter, when you invoked docker run
hello-world, the Docker Engine launched a new container from the hello-world Docker
image and it went on to output quite a lot of information on the screen. From this example,
it is quite evident that Docker images are the basic building block for Docker containers and
Docker images prescribe the behavior of Docker containers.

As clearly illustrated in the preceding figure, when the container is spun-off, a writeable
(read-write) layer is added on top of the image in order to maintain the application state.
There could be several read-only images beneath the container layer (writeable).

Docker Registry
A Docker Registry is a place where Docker images can be stored in order to be publicly or
privately found, accessed, and used by software developers worldwide for quickly crafting
fresh and composite applications without any risks. Because all the stored images will have
gone through multiple validations, verifications, and refinements, the quality of those
images is really high. You can dispatch your Docker image to the registry so that it is
registered and deposited using the docker push subcommand. You can download Docker
images from the registry using the docker pull subcommand.

Handling Docker Containers

[32]

Docker Registry could be hosted by a third party as a public or private registry, like one of
the following registries:

Docker Hub
Quay
Google Container Registry
AWS Container Registry

Every institution, innovator, and individual can have their own Docker Registry to stock up
their images for internal and/or external access and usage.

Working with Docker images
In the previous chapter, we demonstrated the typical Hello World example using the
hello-world image. Now, there is a need for a closer observation of the output of the
docker pull subcommand, which is the de facto command to download Docker images.
Now, in this section, we will use the busybox image, one of the smallest but a very handy
Docker image, to dive deep into Docker image handling:

If you pay close attention to the output of the docker pull subcommand, you will notice
the Using default tag: latest text. The Docker image management capability (the
local image storage on your Docker host or on a Docker image registry) enables storing
multiple variants of the Docker image. In other words, you could use tags to version your
images.

Handling Docker Containers

[33]

By default, Docker always uses the image that is tagged as latest. Each image variant can
be directly identified by qualifying it with an appropriate tag. An image can be tag-
qualified by adding a colon (:) between the tag and the repository name
(<repository>:<tag>). For demonstration, we will pull the 1.24 tagged version of
busybox as shown here:

Awesome! Isn't it? We are able to pull a specific version of busybox; in this case, it is
busybox:1.24. The docker pull command also supports the -a option to download all
available image variants. Use this option cautiously because you might end up filling up
your disk space.

So far, we downloaded a few Docker images from the repository, and now they are locally
available in the Docker host. You can find out the images that are available on the Docker
host by running the docker images subcommand:

Evidently, we have three items in the preceding list and to gain a better understanding of
these, we need to comprehend the information that is printed out by the docker images
subcommand. Here is a list of the possible categories:

REPOSITORY: This is the name of the repository or image. In the preceding
example, the repository names are hello-world and busybox.
TAG: This is the tag associated with the image, for example 1.24 and latest.
One or more tags can be associated with one image.

Handling Docker Containers

[34]

IMAGE ID: Every image is associated with a unique ID. The image ID is
represented using a 64 hex digit long random number. By default, the docker
images subcommand will only show 12 hex digits. You can display all the 64 hex
digits using the --no-trunc flag (for example: sudo docker images --no-
trunc).
CREATED: This indicates the time when the image was created.
SIZE: This category highlights the virtual size of the image.

The Docker Hub
In the previous section, when you ran the docker pull subcommand, the busybox image
got downloaded mysteriously. In this section, let's unravel the mystery around the docker
pull subcommand and how the Docker Hub immensely contributed toward this
unintended success.

The good folks in the Docker community have built a repository of images and they have
made it publicly available at a default location, index.docker.io. This default location is
called the Docker Hub. The docker pull subcommand is programmed to look for images
at this location. Thus, when you pull a busybox image, it is effortlessly downloaded from
the default registry. This mechanism helps in speeding up the spinning of Docker
containers. The Docker Hub is the official repository that contains all the painstakingly
curated images that are created and deposited by the worldwide Docker development
community. This so-called cure is implemented for ensuring that all the images stored in
the Docker Hub are secure and safe through a host of quarantine tasks. There are additional
mechanisms, such as creating the image digest and having content trust, which gives you
the ability to verify both the integrity and the publisher of all the data received from a
registry over any channel.

There are proven verification and validation methods for cleaning up any knowingly or
unknowingly introduced malware, adware, viruses, and so on, from these Docker images.
The digital signature is a prominent mechanism of the utmost integrity of the Docker
images. Nonetheless, if the official image has been either corrupted or tampered with, then
the Docker Engine will issue a warning and then continue to run the image.

Handling Docker Containers

[35]

In addition to the official repository, the Docker Hub Registry also provides a platform for
third-party developers and providers for sharing their images for general consumption. The
third-party images are prefixed by the user ID of their developers or depositors. For
example, thedockerbook/helloworld is a third-party image, wherein thedockerbook is
the user ID and helloworld is the image repository name. You can download any third-
party image using the docker pull subcommand, as shown here:

$ sudo docker pull thedockerbook/helloworld

Apart from the preceding repository, the Docker ecosystem also provides a mechanism for
leveraging images from any third-party repository hub other than the Docker Hub Registry,
and it also provides the images hosted by the local repository hubs. As mentioned earlier,
the Docker Engine has been programmed to look for images at index.docker.io by
default, whereas in the case of third-party or the local repository hub we must manually
specify the path from where the image should be pulled. A manual repository path is
similar to a URL without a protocol specifier, such as https://, http://, and ftp://.
The following is an example of pulling an image from a third-party repository hub:

$ sudo docker pull registry.example.com/myapp

Searching Docker images
As we discussed in the previous section, the Docker Hub repository typically hosts both
official images as well as images that have been contributed by third-party Docker
enthusiasts. At the time of writing this book, thousands of curated Docker images (also
called the Dockerized application) were available for users. Most of them are downloaded
by millions of users. These images can be used either as-is or as a building block for user-
specific applications.

You can search for Docker images in the Docker Hub Registry using the docker search
subcommand, as shown in this example:

$ sudo docker search mysql

The search on mysql will list many mysql images, but we will limit it to just five lines by
piping it with the head -10 command, as follows:

Handling Docker Containers

[36]

As you can see in the preceding search output excerpts, the images are ordered based on
their star rating. The search result also indicates whether the image is an official image
(curated and hosted by Docker Inc) or not. The search result also indicates whether the
image is built using the automation framework provided by Docker Inc. The mysql image
curated and hosted by Docker Inc has a 2759 star rating, which indicated that this is the
most popular mysql image. We strongly recommend that you use the images that are
officially hosted by Docker Inc for security reasons, otherwise make sure that the images are
provided by trusted and well-known sources. The next image in the list is mysql-server,
made available by the third party, mysql, with a 178 star rating. Docker containers are the
standard building blocks of distributed applications.

A dynamic repository of Docker images is being realized with the help of the enthusiastic
contribution of several community members across the Globe. Software engineers can
download the images stocked in the Docker Hub and come out with different images and
containers to exceptionally cater for differing business needs. This sort of arrangement is to
elegantly automate and accelerate the building, deployment, and usage of software
applications. The Docker Hub represents a community effort for providing a great base of
images for applications, so that developers and system administrators can focus on building
new features and functionalities, while minimizing their repetitive work on commodity
scaffolding and plumbing.

Based on the search queries in the Docker Hub Registry and discussions with many of the
developer community members, the Docker company, which spearheaded the Docker
movement so powerfully and passionately, came to the conclusion that the developer
community wanted prebuilt stacks of their favorite programming languages. Specifically,
the developers wanted to get to work as quickly as possible, writing code without wasting
time and wrestling with environments, scaffolding, and dependencies.

Handling Docker Containers

[37]

Working with an interactive container
In the first chapter, we ran our first Hello World container to get a feel for how the
containerization technology works. In this section, we are going to run a container in
interactive mode. The docker run subcommand takes an image as an input and launches
it as a container. You have to pass the -t and -i flags to the docker run subcommand in
order to make the container interactive. The -i flag is the key driver, which makes the
container interactive by grabbing the standard input (STDIN) of the container. The -t flag
allocates a pseudo-TTY or a pseudo Terminal (Terminal emulator) and then assigns that to
the container.

In the following example, we are going to launch an interactive container using the
ubuntu:16.04 image and /bin/bash as the command:

$ sudo docker run -i -t ubuntu:16.04 /bin/bash

Since the ubuntu image has not been downloaded yet, if we use the docker pull
subcommand, then we will get the following message and the docker run command will
start pulling the ubuntu image automatically with following message:

Unable to find image 'ubuntu:16.04' locally
16.04: Pulling from library/ubuntu

As soon as the download is completed, the container will get launched along with the
ubuntu:16.04 image. It will also launch a Bash shell within the container, because we have
specified /bin/bash as the command to be executed. This will land us in a Bash prompt, as
shown here:

root@742718c21816:/#

The preceding Bash prompt will confirm that our container has been launched successfully
and it is ready to take our input. If you are wondering about the hex number
742718c21816 in the prompt, then it is nothing but the hostname of the container. In
Docker parlance, the hostname is the same as the container ID.

Let's quickly run a few commands interactively and confirm what we mentioned about the
prompt is correct, as shown here:

root@742718c21816:/# hostname
742718c21816
root@742718c21816:/# id
uid=0(root) gid=0(root) groups=0(root)
root@742718c21816:/# echo $PS1
[e]0;u@h: wa]${debian_chroot:+($debian_chroot)}u@h:w$
root@742718c21816:/#

Handling Docker Containers

[38]

From the preceding three commands, it is quite evident that the prompt was composed
using the user ID, hostname, and current working directory.

Now, let's use one of the niche features of Docker for detaching it from the interactive
container and then look at the details that Docker manages for this container. Yes, we can
detach it from our container using the Ctrl + P and Ctrl + Q escape sequence. This escape
sequence will detach the TTY from the container and land us in the Docker host prompt $;
however, the container will continue to run. The docker ps subcommand will list all the
running containers and their important properties, as shown here:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
742718c21816 ubuntu:16.04 "/bin/bash" About a
minute ago Up About a minute jolly_lovelace

The docker ps subcommand will list out the following details:

CONTAINER ID: This shows the container ID associated with the container. The
container ID is a 64 hex digit long random number. By default, the docker ps
subcommand will show only 12 hex digits. You can display all the 64 digits using
the --no-trunc flag (For example, sudo docker ps --no-trunc).
IMAGE: This shows the image from which the Docker container has been crafted.
COMMAND: This shows you the command executed during the container launch.
CREATED: This tells you when the container was created.
STATUS: This tells you the current status of the container.
PORTS: This tells you if any port has been assigned to the container.
NAMES: The Docker Engine auto-generates a random container name by
concatenating an adjective and a noun. Either the container ID or its name can be
used to take further action on the container. The container name can be manually
configured using the --name option in the docker run subcommand.

Having looked at the container status, let's attach back to our container using the docker
attach subcommand, as shown in the following example. We can either use the container
ID or its name. In this example, we have used the container name. If you don't see the
prompt, then press the Enter key again:

$ sudo docker attach jolly_lovelace
root@742718c21816:/#

Handling Docker Containers

[39]

Docker allows attaching with a container any number of times, which
proves to be very handy for screen sharing.

The docker attach subcommand takes us back to the container prompt. Let's experiment
a little more with the interactive container that is up-and-running using these commands:

root@742718c21816:/# pwd
/
root@742718c21816:/# ls
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr
root@742718c21816:/# cd usr
root@742718c21816:/usr# ls
bin games include lib local sbin share src
root@742718c21816:/usr# exit
exit
$

As soon as the Bash exit command is issued to the interactive container, it will terminate
the Bash shell process, which in turn will stop the container. As a result, we will land on the
Docker host's prompt $.

Tracking changes inside containers
In the previous section, we demonstrated how to craft a container taking ubuntu as a base
image, and then running some basic commands, such as detaching and attaching the
containers. In that process, we also exposed you to the docker ps subcommand, which
provides the basic container management functionality. In this section, we will demonstrate
how we can effectively track the changes that we introduced in our container and compare
it with the image from which we launched the container. Let's launch a container in
interactive mode, as in the previous section:

$ sudo docker run -i -t ubuntu:16.04 /bin/bash

Let's change the directory to /home, as shown here:

root@d5ad60f174d3:/# cd /home

Handling Docker Containers

[40]

Now, we can create three empty files using the touch command, as follows. The first ls -l
command will show that there are no files in the directory and the second ls -l command
will show that there are three empty files:

root@d5ad60f174d3:/home# ls -l
total 0
root@d5ad60f174d3:/home# touch {abc,cde,fgh}
root@d5ad60f174d3:/home# ls -l
total 0
-rw-r--r-- 1 root root 0 Sep 29 10:54 abc
-rw-r--r-- 1 root root 0 Sep 29 10:54 cde
-rw-r--r-- 1 root root 0 Sep 29 10:54 fgh
root@d5ad60f174d3:/home#

The Docker Engine elegantly manages its filesystem and it allows us to inspect a container
filesystem using the docker diff subcommand. In order to inspect the container
filesystem, we can either detach it from the container or use another Terminal of our Docker
host and then issue the docker diff subcommand. Since we know that any ubuntu
container has its hostname, which is a part of its prompt, and it is also the container's ID, we
can directly run the docker diff subcommand using the container ID that is taken from
the prompt, as shown here:

$ sudo docker diff d5ad60f174d3

In the given example, the docker diff subcommand will generate four lines, as shown
here:

C /home
A /home/abc
A /home/cde
A /home/fgh

The preceding output indicates that the /home directory has been modified, which has been
denoted by C, and the /home/abc, /home/cde, and /home/fgh files have been added, and
these are denoted by A. In addition, D denotes deletion. Since we have not deleted any files,
it is not in our sample output.

When we work with an image and if we don't specify that image through
an appropriate identity (say, a new name), then the latest image
(recently generated) will always be identified and used by the Docker
Engine.

Handling Docker Containers

[41]

Controlling Docker containers
So far, we have discussed a few practical examples to clearly articulate the nitty-gritty of
Docker containers. In this section, we'll introduce a few basic as well as a few advanced
command structures for meticulously illustrating how the Docker containers can be
managed.

The Docker Engine enables you to start, stop, and restart a container with a set of
docker subcommands. Let's begin with the docker stop subcommand, which stops a
running container. When a user issues this command, the Docker Engine sends SIGTERM
(-15) to the main process, which is running inside the container. The SIGTERM signal
requests the process to terminate itself gracefully. Most processes would handle this signal
and facilitate a graceful exit. However, if this process fails to do so, then the Docker Engine
will wait for a grace period. After the grace period, if the process has not been terminated,
then the Docker Engine will forcefully terminate the process. The forceful termination is
achieved by sending SIGKILL (-9). The SIGKILL signal cannot be caught or ignored, and
hence, it will result in an abrupt termination of the process without a proper clean-up.

Now, let's launch our container and experiment with the docker stop subcommand, as
shown here:

$ sudo docker run -i -t ubuntu:16.04 /bin/bash
root@da1c0f7daa2a:/#

Having launched the container, let's run the docker stop subcommand on this container
using the container ID that was taken from the prompt. Of course, we have to use a second
screen/Terminal to run this command, and the command will always echo back to the
container ID, as shown here:

$ sudo docker stop da1c0f7daa2a
da1c0f7daa2a

Now, if we switch to the screen/Terminal where we were running the container, we will
notice that the container is being terminated. If you observe a little more keenly, then you
will also notice the exit text next to the container prompt. This happened due to the
SIGTERM handling mechanism of the Bash shell, as shown here:

root@da1c0f7daa2a:/# exit
$

Handling Docker Containers

[42]

If we take it one step further and run the docker ps subcommand, then we will not find
this container anywhere in the list. The fact is that the docker ps subcommand, by default,
always lists container that is in the running state. Since our container is in the stopped state,
it was comfortably left out of the list. Now, you might ask, how do we see container that is
in the stopped state? Well, the docker ps subcommand takes an additional argument -a,
which will list all the containers in that Docker host irrespective of its status. This can be
done by running the following command:

$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
da1c0f7daa2a ubuntu:16.04 "/bin/bash"
20 minutes ago Exited (0) 10 minutes ago
desperate_engelbart
$

Next, let's look at the docker start subcommand, which is used for starting one or more
stopped containers. A container can be moved to the stopped state either by the docker
stop subcommand or by terminating the main process in the container either normally or
abnormally. On a running container, this subcommand has no effect.

Let's start the previously stopped container using the docker start subcommand by
specifying the container ID as an argument, as follows:

$ sudo docker start da1c0f7daa2a
da1c0f7daa2a
$

By default, the docker start subcommand will not attach to the container. You can attach
it to the container either using the -a option in the docker start subcommand or by
explicitly using the docker attach subcommand, as shown here:

$ sudo docker attach da1c0f7daa2a
root@da1c0f7daa2a:/#

Now, let's run docker ps and verify the container's running status, as shown here:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
da1c0f7daa2a ubuntu:16.04 "/bin/bash"
25 minutes ago Up 3 minutes
desperate_engelbart
$

Handling Docker Containers

[43]

The restart command is a combination of the stop and the start functionality. In other
words, the restart command will stop a running container by following the same steps
followed by the docker stop subcommand and then it will initiate the start process.
This functionality will be executed by default through the docker restart subcommand.

The next important set of container controlling subcommands are docker pause and
docker unpause. The docker pause subcommand will essentially freeze the execution of
all the processes within that container. Conversely, the docker unpause subcommand will
unfreeze the execution of all the processes within that container and resume the execution
from the point where it was frozen.

Having seen the technical explanation of pause/unpause, let's see a detailed example for
illustrating how this feature works. We have used two screen/Terminal scenarios. On one
Terminal, we have launched our container and used an infinite while loop for displaying
the date and time, sleeping for 5 seconds, and then continuing the loop. We will run the
following commands:

$ sudo docker run -i -t ubuntu:16.04 /bin/bash
root@c439077aa80a:/# while true; do date; sleep 5; done
Thu Oct 2 03:11:19 UTC 2016
Thu Oct 2 03:11:24 UTC 2016
Thu Oct 2 03:11:29 UTC 2016
Thu Oct 2 03:11:34 UTC 2016
Thu Oct 2 03:11:59 UTC 2016
Thu Oct 2 03:12:04 UTC 2016
Thu Oct 2 03:12:09 UTC 2016
Thu Oct 2 03:12:14 UTC 2016
Thu Oct 2 03:12:19 UTC 2016
Thu Oct 2 03:12:24 UTC 2016
Thu Oct 2 03:12:29 UTC 2016
Thu Oct 2 03:12:34 UTC 2016

Our little script has very faithfully printed the date and time every 5 seconds with an
exception at the following position:

Thu Oct 2 03:11:34 UTC 2016
Thu Oct 2 03:11:59 UTC 2016

Here, we encountered a delay of 25 seconds because this is when we initiated the docker
pause subcommand on our container on the second Terminal screen, as shown here:

$ sudo docker pause c439077aa80a
c439077aa80a

Handling Docker Containers

[44]

When we paused our container, we looked at the process status using the docker ps
subcommand on our container, which was on the same screen, and it clearly indicated that
the container had been paused, as shown in this command result:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
c439077aa80a ubuntu:16.04 "/bin/bash"
47 seconds ago Up 46 seconds (Paused)
ecstatic_torvalds

We continued issuing the docker unpause subcommand, which unfroze our container,
continued its execution, and then started printing the date and time, as we saw in the
preceding command, as shown here:

$ sudo docker unpause c439077aa80a
c439077aa80a

We explained the pause and the unpause commands at the beginning of this section.
Lastly, the container and the script running within it were stopped using the docker stop
subcommand, as shown here:

$ sudo docker stop c439077aa80a
c439077aa80a

Housekeeping containers
In many of the previous examples, when we issued docker ps -a, we saw many stopped
containers. These containers could continue to stay in the stopped status for ages if we
chose not to intervene. At the outset, it may look like a glitch, but in reality, we can perform
operations, such as committing an image from a container and restarting the stopped
container. However, not all stopped containers will be reused again, and each of these
unused containers will take up disk space in the filesystem of the Docker host. The Docker
Engine provides a couple of ways to alleviate this issue. Let's start exploring them.

During a container startup, we can instruct the Docker Engine to clean up the container as
soon as it reaches the stopped state. For this purpose, the docker run subcommand
supports a --rm option (for example, sudo docker run -i -t --rm ubuntu:16.04
/bin/bash).

Handling Docker Containers

[45]

The other alternative is to list all the containers using the -a option of the docker ps
subcommand and then manually remove them using the docker rm subcommand, as
shown here:

$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
7473f2568add ubuntu:16.04 "/bin/bash" 5 seconds ago
Exited (0) 3 seconds ago
jolly_wilson

$ sudo docker rm 7473f2568add
7473f2568add
$

Two Docker subcommands, that is, docker rm and docker ps, can be combined together
for automatically deleting all the containers that are not currently running, as shown in the
following command:

$ sudo docker rm $(sudo docker ps -aq)

In the preceding command, the command inside $() will produce a list of the full container
IDs of every container, running or otherwise, which will become the argument for the
docker rm subcommand. Unless forced with the -f option to do otherwise, the docker
rm subcommand will only remove the container that is not in the running state. It will
generate the following error for the running container and then continue to the next
container on the list:

Error response from daemon: You cannot remove a running container.
Stop the container before attempting removal or use -f

Perhaps we could avoid the preceding error by filtering the containers that are in the
Exited state using the filter (-f) option of the docker ps subcommand, as shown here:

$ sudo docker rm $(sudo docker ps -aq -f state=exited)

Feeling frustrated at typing such a long and complicated chain of commands? Here is the
good news for you. The docker container prune subcommand comes in handy to
remove all stopped containers. This functionality is introduced in Docker version 1.13 and
here is a sample run of the docker container prune subcommand:

Handling Docker Containers

[46]

Building images from containers
So far, we have crafted a handful of containers using the standard base images busybox
and ubuntu. In this section, let's see how we can add more software to our base image on a
running container and then convert that container into an image for future use.

Let's take ubuntu:16.04 as our base image, install the wget application, and then convert
the running container to an image by performing the following steps:

Launch an ubuntu:16.04 container using the docker run subcommand, as1.
shown here:

 $ sudo docker run -i -t ubuntu:16.04 /bin/bash

Having launched the container, let's quickly verify if wget is available for our2.
image or not. We used the which command with wget as an argument for this
purpose and in our case, it returns empty, which essentially means that it could
not find any wget installation in this container. This command is run as follows:

 root@472c96295678:/# which wget
 root@472c96295678:/#

Now, let's move on to the next step, which involves the wget installation. Since it3.
is a brand new ubuntu container, before installing wget we must synchronize it
with the Ubuntu package repository, as shown here:

 root@472c96295678:/# apt-get update

Once the Ubuntu package repository synchronization is over, we can proceed4.
toward installing wget, as shown here:

 root@472c96295678:/# apt-get install -y wget

Handling Docker Containers

[47]

Having completed the wget installation, let's confirm our installation of wget by5.
invoking the which command with wget as an argument, as shown here:

 root@472c96295678:/# which wget
 /usr/bin/wget
 root@472c96295678:/#

Installation of any software would alter the base image composition, which we6.
can also trace using the docker diff subcommand introduced in the Tracking
changes inside containers section. From a second Terminal/screen, we can issue the
docker diff subcommand, as follows:

 $ sudo docker diff 472c96295678

The preceding command would show a few hundred lines of modification to the
ubuntu image. This modification includes the update on the package repository,
wget binary, and the support files for wget.

Finally, let's move on to the most important step of committing the image. The7.
docker commit subcommand can be performed on a running or a stopped
container. When a commit is performed on a running container, the Docker
Engine will pause the container during the commit operation in order to avoid
any data inconsistency. We strongly recommend that you perform the commit
operation on a stopped container. We can commit a container to an image with
the docker commit subcommand, as shown here:

 $ sudo docker commit 472c96295678 \
 learningdocker/ubuntu_wget
 sha256:a530f0a0238654fa741813fac39bba2cc14457aee079a7ae1f
 e1c64dc7e1ac25

We committed our image using the learningdocker/ubuntu_wget name.

We also saw how to create an image from a container, step by step. Now, let's quickly list
the images on our Docker host and see if this newly created image is a part of the image list,
using the following command:

$ sudo docker images
REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE
learningdocker/ubuntu_wget latest a530f0a02386
48 seconds ago 221.3 MB
busybox latest e72ac664f4f0
2 days ago 2.433 MB

Handling Docker Containers

[48]

ubuntu 16.04 6b4e8a7373fe
2 days ago 194.8 MB

From the preceding docker images subcommand output, it is quite evident that our
image creation from the container was quite successful.

Now that you have learned how to create an image from containers using a few easy steps,
we encourage you to predominantly use this method for testing. The most elegant and the
most recommended way of creating an image is to use the Dockerfile method, which will
introduce in the next chapter.

Launching a container as a daemon
We already experimented with an interactive container, tracked the changes that were
made to the containers, created images from the containers, and then gained insights in the
containerization paradigm. Now, let's move on to understand the real workhorse of Docker
technology. Yes that's right. In this section, we will walk you through the steps that are
required for launching a container in detached mode; in other words, you will learn about
the steps that are required for launching a container as a daemon. We will also view the text
that is generated in the container.

The docker run subcommand supports the -d option, which will launch a container in
detached mode, that is, it will launch a container as a daemon. For illustrating, let's resort to
our date and time script, which we used in the pause/unpause container example, as
shown here:

$ sudo docker run -d ubuntu \
 /bin/bash -c "while true; do date; sleep 5; done"
0137d98ee363b44f22a48246ac5d460c65b67e4d7955aab6cbb0379ac421269b

The docker logs subcommand is used for viewing the output generated by our daemon
container, as shown here:

$ sudo docker logs \
0137d98ee363b44f22a48246ac5d460c65b67e4d7955aab6cbb0379ac421269b
Sat Oct 4 17:41:04 UTC 2016
Sat Oct 4 17:41:09 UTC 2016
Sat Oct 4 17:41:14 UTC 2016
Sat Oct 4 17:41:19 UTC 2016

Handling Docker Containers

[49]

Summary
In this chapter, we described required insights in the post-implementation phases,
primarily regarding the operational aspect of Docker containers. We started the chapter by
clarifying important terms, such as images, containers, registry, and repository, in order to
enable you to acquire an unambiguous understanding of the concepts illustrated thereafter.
We explained how to search for images in the Docker repository. We also discussed the
operation and handling of Docker containers, how to track changes inside containers, and
how to control and housekeep containers. In the next chapter, we will explain promising
and potential techniques and tools for building Docker images in an easy-to-grasp manner.

3
Building Images

In the previous chapter, we explained the image and container handling, and its
housekeeping techniques and tips in detail. In addition to that, we described the standard
procedure for installing a software package on a Docker container and then converting the
container into an image for future usage and maneuvering. This chapter is quite different
from the previous ones and is included in this book to clearly describe how Docker images
are built using Dockerfile, which is the standard way for building highly usable Docker
images. Leveraging Dockerfile is the most competent way of building powerful images
for the software development community.

We will cover the following topics in this chapter:

Docker's integrated image building system
A quick overview of the syntax of Dockerfile
The Dockerfile build instructions
A brief overview of the Docker image management

Docker's integrated image building system
Docker images are the fundamental building blocks of containers. These images could be
very basic operating environments, such as busybox or ubuntu, as we found while
experimenting with Docker in earlier chapters. Alternatively, the images can craft advanced
application stacks for the enterprise and cloud IT environments. As we discussed in the
previous chapter, we can craft an image manually by launching a container from a base
image, install all the required applications, make the necessary configuration file changes,
and then commit the container as an image.

Building Images

[51]

As a better alternative, we can resort to the automated approach of crafting the images
using Dockerfile, which is a text-based build script that contains special instructions in a
sequence for building the correct and relevant images from the base images. The sequential
instructions inside Dockerfile can include selecting the base image, installing the required
application, adding the configuration and the data files, and automatically running the
services as well as exposing those services to the external world. Thus, the Dockerfile-
based automated build system has simplified the image-building process remarkably. It
also offers a great deal of flexibility in organizing the build instructions and in visualizing
the complete build process.

The Docker Engine tightly integrates this build process with the help of the docker build
subcommand. In the client-server paradigm of Docker, the Docker server (or daemon) is
responsible for the complete build process, and the Docker command-line interface is
responsible for transferring the build context, including transferring Dockerfile to the
daemon.

In order to have a sneak peak into the Dockerfile integrated build system, we will
introduce you to a basic Dockerfile in this section. Then, we will explain the steps for
converting that Dockerfile into an image, and then launch a container from that image.
Our Dockerfile is made up of two instructions, as shown here:

$ cat Dockerfile
FROM busybox:latest
CMD echo Hello World!!

We will discuss these two instructions as follows:

The first instruction is for choosing the base image selection. In this example, we
select the busybox:latest image.
The second instruction is for carrying out the CMD command, which instructs the
container to execute echo Hello World!!.

Now, let's proceed towards generating a Docker image using the preceding Dockerfile by
calling docker build along with the path of Dockerfile. In our example, we will invoke
the docker build subcommand from the directory where we have stored Dockerfile,
and the path will be specified by the following command:

$ sudo docker build .

Building Images

[52]

After issuing the preceding command, the build process will begin by sending the build
context to the daemon and then display the text shown here:

Sending build context to Docker daemon 2.048 kB
Step 1 : FROM busybox:latest

The build process will continue and after completing itself, will display the following:

Successfully built 0a2abe57c325

In the preceding example, the image was built with the 0a2abe57c325 image ID. Let's use
this image to launch a container using the docker run subcommand, as follows:

$ sudo docker run 0a2abe57c325
Hello World!!

Cool, isn't it? With very little effort, we have been able to craft an image with busybox as
the base image, and we have been able to extend that image to produce Hello World!!.
This is a simple application, but the enterprise-scale images can also be realized using the
same technology.

Now, let's look at the image details using the docker images subcommand, as shown
here:

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 0a2abe57c325 2 hours ago 1.11 MB

Here, you may be surprised to see that the image (REPOSITORY) and TAG name have been
listed as <none>. This is because we did not specify any image or any TAG name when we
built this image. You could specify an image name and optionally a TAG name using the
docker tag subcommand, as shown here:

$ sudo docker tag 0a2abe57c325 busyboxplus

The alternative approach is to build the image with an image name during the build time
using the -t option for the docker build subcommand, as shown here:

$ sudo docker build -t busyboxplus .

Building Images

[53]

Since there is no change to the instructions in Dockerfile, the Docker Engine will
efficiently reuse the old image that has the 0a2abe57c325 ID and update the image name
to busyboxplus. By default, the build system applies latest as the tag name. This
behavior can be modified by specifying the tag name after the image name by having a :
separator placed between them. This means that, <image name>:<tag name> is the
correct syntax for modifying behaviors, wherein <image name> is the name of the image
and <tag name> is the name of the tag.

Once again, let's look at the image details using the docker images subcommand, and you
will notice that the image (repository) name is busyboxplus and the tag name is latest:

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busyboxplus latest 0a2abe57c325 2 hours ago
2.433 MB

Building images with an image name is always recommended as the best practice.

Having experienced the magic of Dockerfile, we will introduce you to the syntax or the
format of Dockerfile and explain a dozen Dockerfile instructions in the subsequent
sections.

By default, the docker build subcommand uses Dockerfile located at
the build context. However, with the -f option, the docker build
subcommand allows us to specify an alternate Dockerfile at a different
path or name.

A quick overview of the Dockerfile's syntax
In this section, we will explain the syntax or the format of Dockerfile. A Dockerfile is
made up of instructions, comments, parser directives, and empty lines, as shown here:

Comment

INSTRUCTION arguments

Building Images

[54]

The instruction line of Dockerfile is made up of two components, where the instruction
line begins with the INSTRUCTION itself, which is followed by the arguments for the
instruction. The INSTRUCTION can be written in any case, in other words, it is case-
insensitive. However, the standard practice or the convention is to use uppercase in order to
differentiate it from the arguments. Let's relook at the content of Dockerfile in our
previous example:

FROM busybox:latest
CMD echo Hello World!!

Here, FROM is an instruction that has taken busybox:latest as an argument and CMD is an
instruction that has taken echo Hello World!! as an argument.

The comment line
The comment line in Dockerfile must begin with the # symbol. The # symbol after an
instruction is considered as an argument. If the # symbol is preceded by a whitespace, then
the docker build system will consider this as an unknown instruction and skip the line.
Now, understand the preceding cases with the help of an example to get a better
understanding of the comment line:

A valid Dockerfile comment line always begins with a # symbol as the first
character of the line:

 # This is my first Dockerfile comment

The # symbol can be part of an argument:

 CMD echo ### Welcome to Docker ###

If the # symbol is preceded by a whitespace, then it is considered as an unknown
instruction by the build system:

 # this is an invalid comment line

The docker build system ignores any empty line in the Dockerfile and hence, the
author of Dockerfile is encouraged to add comments and empty lines to substantially
improve the readability of Dockerfile.

Building Images

[55]

The parser directives
As the name implies, the parser directives instruct the Dockerfile parser to handle the
content of Dockerfile as specified in the directives. The parser directives are optional and
must be at the top of a Dockerfile. Currently, escape is the only supported directive.

We use the escape character to escape characters in a line or to extend a single line to
multiple lines. On UNIX-like platforms, \ is the escape character, whereas, on Windows, \
is a directory path separator and ` is the escape character. By default, the Dockerfile
parser considers \ is the escape character and you could override this on Windows using
the escape parser directive, as shown here:

escape=`

The Dockerfile build instructions
So far, we have looked at the integrated build system, the Dockerfile syntax, and a
sample life cycle, wherein we discussed how a sample Dockerfile is leveraged for
generating an image and how a container gets spun off from that image. In this section, we
will introduce the Dockerfile instructions, their syntax, and a few befitting examples.

The FROM instruction
The FROM instruction is the most important one and is the first valid instruction of a
Dockerfile. It sets the base image for the build process. Subsequent instructions will use
this base image and build on top of it. The Docker build system lets you flexibly use the
images built by anyone. You can also extend them by adding more precise and practical
features. By default, the Docker build system looks for the images in the Docker host.
However, if the image is not found in the Docker host, then the Docker build system will
pull the image from the publicly available Docker Hub Registry. The Docker build system
will return an error if it cannot find the specified image in the Docker host and the Docker
Hub Registry.

The FROM instruction has the following syntax:

FROM <image>[:<tag>|@<digest>]

Building Images

[56]

In the preceding code statement, note the following:

<image>: This is the name of the image that will be used as the base image.
<tag> or <digest>: Both <tag> and <digest> are optional attributes and you
can qualify a particular Docker image version using either a tag attribute or a
digest attribute. The latest tag is assumed by default if both tag and digest are
not present.

Here is an example of the FROM instruction with the centos image name:

FROM centos

In the preceding example, the Docker build system will implicitly default to the latest tag
because neither a tag nor a digest is explicitly added to the image name. Here is another
example of the FROM instruction with the ubuntu image name and the 16.04 tag qualifier:

FROM ubuntu:16.04

Next is a classic example of the FROM instruction with the ubuntu image name and the
digest qualifier:

FROM
ubuntu@sha256:8e2324f2288c26e1393b63e680ee7844202391414dbd48497e9a4fd997cd3
cbf

Docker allows multiple FROM instructions in a single Dockerfile in order to create
multiple images. The Docker build system will pull all the images specified in the FROM
instruction. Docker does not provide any mechanism for naming the individual images that
are generated with the help of multiple FROM instructions. We strongly discourage using
multiple FROM instructions in a single Dockerfile, as damaging conflicts could arise.

The MAINTAINER instruction
The MAINTAINER instruction is an informational instruction of a Dockerfile. This
instruction capability enables the authors to set the details in an image. Docker does not
place any restrictions on placing the MAINTAINER instruction in Dockerfile. However, it is
strongly recommended that you place it after the FROM instruction.

The following is the syntax of the MAINTAINER instruction, where <author's detail> can
be in any text. However, it is strongly recommended that you use the image, author's name,
and e-mail address as shown in this code syntax:

MAINTAINER <author's detail>

Building Images

[57]

Here is an example of the MAINTAINER instruction with the author's name and e-mail
address:

MAINTAINER Dr. Peter <peterindia@gmail.com>

The COPY instruction
The COPY instruction enables you to copy the files from the Docker host to the filesystem of
the new image. The following is the syntax of the COPY instruction:

COPY <src> ... <dst>

The preceding code terms are explained here:

<src>: This is the source directory, the file in the build context, or the directory
from where the docker build subcommand was invoked.
...: This indicates that multiple source files can either be specified directly or be
specified by wildcards.
<dst>: This is the destination path for the new image into which the source file or
directory will get copied. If multiple files have been specified, then the
destination path must be a directory and it must end with a slash (/).

Using an absolute path for the destination directory or a file is recommended. In the
absence of an absolute path, the COPY instruction will assume that the destination path will
start from the root (/). The COPY instruction is powerful enough for creating a new
directory and for overwriting the filesystem in the newly created image.

In the following example, we will copy the html directory from the source build context to
/var/www/html, which is in the image filesystem, using the COPY instruction, as shown
here:

COPY html /var/www/html

Here is another example of the multiple files (httpd.conf and magic) that will be copied
from the source build context to /etc/httpd/conf/, which is in the image filesystem:

COPY httpd.conf magic /etc/httpd/conf/

Building Images

[58]

The ADD instruction
The ADD instruction is similar to the COPY instruction. However, in addition to the
functionality supported by the COPY instruction, the ADD instruction can handle the TAR
files and remote URLs. We can annotate the ADD instruction as COPY on steroids.

The following is the syntax of the ADD instruction:

ADD <src> ... <dst>

The arguments of the ADD instruction are very similar to those of the COPY instruction, as
shown here:

<src>: This is either the source directory or the file that is in the build context or
in the directory from where the docker build subcommand will be invoked.
However, the noteworthy difference is that the source can either be a TAR file
stored in the build context or be a remote URL.
...: This indicates that multiple source files can either be specified directly or be
specified using wildcards.
<dst>: This is the destination path for the new image into which the source file or
directory will be copied.

Here is an example for demonstrating the procedure for copying multiple source files to the
various destination directories in the target image filesystem. In this example, we have
taken a TAR file (web-page-config.tar) in the source build context with the http
daemon configuration file and the files for the web pages are stored in the appropriate
directory structure, as shown here:

$ tar tf web-page-config.tar
etc/httpd/conf/httpd.conf
var/www/html/index.html
var/www/html/aboutus.html
var/www/html/images/welcome.gif
var/www/html/images/banner.gif

The next line in the Dockerfile content has an ADD instruction for copying the TAR file
(web-page-config.tar) to the target image and extracting the TAR file from the root
directory (/) of the target image, as shown here:

ADD web-page-config.tar /

Thus, the TAR option of the ADD instruction can be used for copying multiple files to the
target image.

Building Images

[59]

The ENV instruction
The ENV instruction sets an environment variable in the new image. An environment
variable is a key-value pair, which can be accessed by any script or application. Linux
applications use the environment variables a lot for a starting configuration.

The following line forms the syntax of the ENV instruction:

ENV <key> <value>

Here, the code terms indicate the following:

<key>: This is the environment variable
<value>: This is the value that is to be set for the environment variable

The following lines give two examples for the ENV instruction, where, in the first line,
DEBUG_LVL has been set to 3 and on the second line, APACHE_LOG_DIR has been set to
/var/log/apache:

ENV DEBUG_LVL 3
ENV APACHE_LOG_DIR /var/log/apache

The ARG instruction
The ARG instruction lets you define variables that can be passed during the Docker image
build time. The Docker build subcommand supports the --build-arg flag to pass a
value to the variables defined using the ARG instruction. If you specify a build argument
that was not defined in your Dockerfile, the build would fail. In other words, the build
argument variables must be defined in the Dockerfile to be passed during the Docker
image build time.

The syntax of the ARG instruction is as follows:

ARG <variable>[=<default value>]

Here, the code terms mean the following:

<variable>: This is the build argument variable
<default value>: This is the default value you could optionally specify to the
build argument variable

Building Images

[60]

Here is an example for the ARG instruction:

ARG usr
ARG uid=1000

Here is an example of the --build-arg flag of the docker build subcommand:

$ docker build --build-arg usr=app --build-arg uid=100 .

The environment variables
The environment variables declared using the ENV or ARG instruction can be used in the
ADD, COPY, ENV, EXPOSE, LABEL, USER, WORKDIR, VOLUME, STOPSIGNAL, and ONBUILD
instructions.

Here is an example of the environment variable usage:

ARG BUILD_VERSION
LABEL com.example.app.build_version=${BUILD_VERSION}

The USER instruction
The USER instruction sets the startup user ID or username in the new image. By default, the
containers will be launched with root as the user ID or UID. Essentially, the USER
instruction will modify the default user ID from root to the one specified in this
instruction.

The syntax of the USER instruction is as follows:

USER <UID>|<UName>

The USER instructions accept either <UID> or <UName> as its argument:

<UID>: This is a numerical user ID
<UName>: This is a valid username

The following is an example for setting the default user ID at the time of startup to 73. Here,
73 is the numerical ID of the user:

USER 73

Building Images

[61]

Though it is recommended that you have a valid user ID to match with the /etc/passwd
file, the user ID can contain any random numerical value. However, the username must
match with a valid username in the /etc/passwd file, otherwise, the docker run
subcommand will fail and it will display the following error message:

finalize namespace setup user get supplementary groups Unable to find user

The WORKDIR instruction
The WORKDIR instruction changes the current working directory from / to the path specified
by this instruction. The ensuing instructions, such as RUN, CMD, and ENTRYPOINT will also
work on the directory set by the WORKDIR instruction.

The following line gives the appropriate syntax for the WORKDIR instruction:

WORKDIR <dirpath>

Here, <dirpath> is the path for the working directory to set in. The path can be either
absolute or relative. In the case of a relative path, it will be relative to the previous path set
by the WORKDIR instruction. If the specified directory is not found in the target image
filesystem, then the directory will be created.

The following line is a clear example of the WORKDIR instruction in a Dockerfile:

WORKDIR /var/log

The VOLUME instruction
The VOLUME instruction creates a directory in the image filesystem, which can later be used
for mounting volumes from the Docker host or the other containers.

The VOLUME instruction has two types of syntax, as shown here:

The first type is either exec or JSON array (all values must be within double-
quotes (")):

 VOLUME ["<mountpoint>"]

The second type is the shell, as shown here:

 VOLUME <mountpoint>

Building Images

[62]

In the preceding lines, <mountpoint> is the mount point that has to be created in the new
image.

The EXPOSE instruction
The EXPOSE instruction opens up a container network port for communicating between the
container and the external world.

The syntax of the EXPOSE instruction is as follows:

EXPOSE <port>[/<proto>] [<port>[/<proto>]...]

Here, the code terms mean the following:

<port>: This is the network port that has to be exposed to the outside world.
<proto>: This is an optional field provided for a specific transport protocol, such
as TCP and UDP. If no transport protocol has been specified, then TCP is
assumed to be the transport protocol.

The EXPOSE instruction allows you to specify multiple ports in a single line.

The following is an example of the EXPOSE instruction inside a Dockerfile exposing the
7373 port number as a UDP port and the 8080 port number as a TCP port. As mentioned
earlier, if the transport protocol has not been specified, then the TCP transport is assumed to
be the transport protocol:

EXPOSE 7373/udp 8080

The LABEL instruction
The LABEL instruction enables you to add key-value pairs as metadata to your Docker
images. These metadata can be further leveraged to provide meaningful Docker image
management and orchestration.

The syntax of the LABEL instruction is as follows:

LABEL <key-1>=<val-1> <key-2>=<val-2> ... <key-n>=<val-n>

The LABEL instruction can have one or more key-value pairs. Though a Dockerfile can
have more than one LABEL instruction, it is recommended that you use a single LABEL
instruction with multiple key-value pairs.

Building Images

[63]

Here is an example of the LABEL instruction:

LABEL version="2.0"
 release-date="2016-08-05"

The preceding label keys are very simple and this could result in naming conflicts. Hence
Docker recommends using namespaces to label keys using the reverse domain notation.
There is a community project called Label Schema that provides shared namespace. The
shared namespace acts as a glue between the image creators and tool builders to provide
standardized Docker image management and orchestration. Here is an example of
the LABEL instruction using Label Schema:

LABEL org.label-schema.schema-version="1.0"
 org.label-schema.version="2.0"
 org.label-schema.description="Learning Docker Example"

The RUN instruction
The RUN instruction is the real workhorse during the build, and it can run any command.
The general recommendation is to execute the multiple commands using one RUN
instruction. This reduces the layers in the resulting Docker image because the Docker
system inherently creates a layer for each time an instruction is called in Dockerfile.

The RUN instruction has two types of syntax:

The first is the shell type, as shown here:

 RUN <command>

Here, <command> is the shell command that has to be executed during the build
time. If this type of syntax is to be used, then the command is always executed
using /bin/sh -c.

The second syntax type is either exec or the JSON array, as shown here:

 RUN ["<exec>", "<arg-1>", ..., "<arg-n>"]

Here, the code terms mean the following:

<exec>: This is the executable to run during the build time
<arg-1>, ..., <arg-n>: These are the variable numbers (zero or
more) of arguments for the executable

Building Images

[64]

Unlike the first type of syntax, this type does not invoke /bin/sh -c. Hence, the types of
shell processing, such as the variable substitution ($USER) and the wildcard substitution (*,
?) do not happen in this type. If shell processing is critical for you, then you are encouraged
to use the shell type. However, if you still prefer the exec (JSON array type) type, then use
your preferred shell as the executable and supply the command as an argument.

Consider the example, RUN ["bash", "-c", "rm", "-rf", "/tmp/abc"].

Now, let's look at a few examples of the RUN instruction. In the first example, we will use
the RUN instruction for adding a greeting line to the .bashrc file in the target image
filesystem, as shown here:

RUN echo "echo Welcome to Docker!" >> /root/.bashrc

The second example is a Dockerfile, which has the instructions for crafting an Apache2
application image on top of the Ubuntu 14.04 base image. The following steps will explain
the Dockerfile instructions line by line:

We are going to build an image using ubuntu:14.04 as the base image, using1.
the FROM instruction, as shown here:

 ###
 # Dockerfile to build an Apache2 image
 ###
 # Base image is Ubuntu
 FROM ubuntu:14.04

Set the author's details using the MAINTAINER instruction, as shown here:2.

 # Author: Dr. Peter
 MAINTAINER Dr. Peter <peterindia@gmail.com>

Using one RUN instruction, we will synchronize the apt repository source list,3.
install the apache2 package, and then clean the retrieved files, as shown here:

 # Install apache2 package
 RUN apt-get update && \
 apt-get install -y apache2 && \
 apt-get clean

Building Images

[65]

The CMD instruction
The CMD instruction can run any command (or application), which is similar to the RUN
instruction. However, the major difference between these two is the time of execution. The
command supplied through the RUN instruction is executed during the build time, whereas
the command specified by the CMD instruction is executed when the container is launched
from the newly created image. Thus, the CMD instruction provides a default execution for
this container. However, it can be overridden by the docker run subcommand arguments.
When the application terminates, the container will also terminate along with the
application and vice versa.

The CMD instruction has three types of syntax, as shown here:

The first syntax type is the shell type, as shown here:

 CMD <command>

Here, <command> is the shell command, which has to be executed during the
launch of the container. If this type of syntax is used, then the command is always
executed using /bin/sh -c.

The second type of syntax is exec or the JSON array, as shown here:

 CMD ["<exec>", "<arg-1>", ..., "<arg-n>"]

Here, the code terms mean the following:

<exec>: This is the executable, which is to be run during the launch of
the container
<arg-1>, ..., <arg-n>: These are the variable numbers (zero or
more) of arguments for the executable

The third type of syntax is also exec or the JSON array, which is similar to the
previous type. However, this type is used for setting the default parameters to the
ENTRYPOINT instruction, as shown here:

 CMD ["<arg-1>", ..., "<arg-n>"]

Here, the code terms mean the following:

<arg-1>, ..., <arg-n>: These are the variable numbers (zero or more) of
arguments for the ENTRYPOINT instruction, which will be explained in the next
section.

Building Images

[66]

Syntactically, you can add more than one CMD instruction in Dockerfile. However, the
build system will ignore all the CMD instructions except for the last one. In other words, in
the case of multiple CMD instructions, only the last CMD instruction will be effective.

Here, in this example, let's craft an image using Dockerfile with the CMD instruction for
providing a default execution and then launching a container using the crafted image. The
following is Dockerfile with a CMD instruction to echo a text:

##
Dockerfile to demonstrate the behavior of CMD
##
Build from base image busybox:latest
FROM busybox:latest
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Set command for CMD
CMD ["echo", "Dockerfile CMD demo"]

Now, let's build a Docker image using the docker build subcommand and cmd-demo as
the image name. The docker build system will read the instruction from the Dockerfile
that is stored in the current directory (.), and craft the image accordingly, as shown here:

$ sudo docker build -t cmd-demo .

Having built the image, we can launch the container using the docker run subcommand,
as shown here:

$ sudo docker run cmd-demo
Dockerfile CMD demo

Cool, isn't it? We have given a default execution for our container and our container has
faithfully echoed Dockerfile CMD demo. However, this default execution can be easily
overridden by passing another command as an argument to the docker run subcommand,
as shown in the following example:

$ sudo docker run cmd-demo echo Override CMD demo
Override CMD demo

Building Images

[67]

The ENTRYPOINT instruction
The ENTRYPOINT instruction will help in crafting an image for running an application
(entry point) during the complete life cycle of the container, which would have been spun
out of the image. When the entry point application is terminated, the container would also
be terminated along with the application and vice versa. Thus, the ENTRYPOINT instruction
would make the container function like an executable. Functionally, ENTRYPOINT is akin to
the CMD instruction, but the major difference between the two is that the entry point
application is launched using the ENTRYPOINT instruction, which cannot be overridden
using the docker run subcommand arguments. However, these docker run
subcommand arguments will be passed as additional arguments to the entry point
application. Having said this, Docker provides a mechanism for overriding the entry point
application through the --entrypoint option in the docker run subcommand. The --
entrypoint option can accept only words as its argument and hence, it has limited
functionality.

Syntactically, the ENTRYPOINT instruction is very similar to the RUN and CMD instructions,
and it has two types of syntax, as shown here:

The first type of syntax is the shell type, as shown here:

 ENTRYPOINT <command>

Here, <command> is the shell command, which is executed during the launch of
the container. If this type of syntax is used, then the command is always executed
using /bin/sh -c.

The second type of syntax is exec or the JSON array, as shown here:

 ENTRYPOINT ["<exec>", "<arg-1>", ..., "<arg-n>"]

Here, the code terms mean the following:

<exec>: This is the executable, which has to be run during the launch
of the container
<arg-1>, ..., <arg-n>: These are the variable numbers (zero or
more) of arguments for the executable

Building Images

[68]

Syntactically, you can have more than one ENTRYPOINT instruction in a Dockerfile.
However, the build system will ignore all the ENTRYPOINT instructions except the last one.
In other words, in the case of multiple ENTRYPOINT instructions, only the last ENTRYPOINT
instruction will be effective.

In order to gain a better understanding of the ENTRYPOINT instruction, let's craft an image
using Dockerfile with the ENTRYPOINT instruction and then launch a container using the
crafted image. The following is Dockerfile with an ENTRYPOINT instruction to echo a
text:

##
Dockerfile to demonstrate the behavior of ENTRYPOINT
##
Build from base image busybox:latest
FROM busybox:latest
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Set entrypoint command
ENTRYPOINT ["echo", "Dockerfile ENTRYPOINT demo"]

Now, let's build a Docker image using the docker build as the subcommand and
entrypoint-demo as the image name. The docker build system would read the
instruction from Dockerfile stored in the current directory (.) and craft the image, as
shown here:

$ sudo docker build -t entrypoint-demo .

Having built the image, we can launch the container using the docker run subcommand:

$ sudo docker run entrypoint-demo
Dockerfile ENTRYPOINT demo

Here, the container will run like an executable by echoing the Dockerfile ENTRYPOINT
demo string and then it will exit immediately. If we pass any additional arguments to the
docker run subcommand, then the additional argument would be passed to the
ENTRYPOINT command. The following is the demonstration of launching the same image
with the additional arguments given to the docker run subcommand:

$ sudo docker run entrypoint-demo with additional arguments
Dockerfile ENTRYPOINT demo with additional arguments

Building Images

[69]

Now, let's see an example where we override the build time entry point application with
the --entrypoint option and then launch a shell (/bin/sh) in the docker run
subcommand, as shown here:

$ sudo docker run -it --entrypoint="/bin/sh" entrypoint-demo
/ #

The HEALTHCHECK instruction
Any Docker container is designed to run just one process/application/service as a best
practice and also to be uniquely compatible with the fast-evolving Microservices
Architecture (MSA). The life cycle of a container is tightly bound to the process running
inside the container. When the process running inside the container crashes or dies for any
reason, the Docker Engine will move the container to the stop state. There is a possibility
that the application running inside the container might be in an unhealthy state and such a
state must be externalized for effective container management. Here the HEALTHCHECK
instruction comes in handy to monitor the health of the containerized application by
running a health monitoring command (or tool) at a prescribed interval.

The syntax of the HEALTHCHECK instruction is as follows:

HEALTHCHECK [<options>] CMD <command>

Here, the code terms mean the following:

<command>: The HEALTHCHECK command is to be executed at a prescribed
interval. If the command exit status is 0, the container is considered to be in the
healthy state. If the command exit status is 1, the container is considered to be in
the unhealthy state.
<options>: By default, the HEALTHCHECK command is invoked every 30 seconds,
the command timeout is 30 seconds, and the command is retried three times
before the container is declared unhealthy. Optionally, you can modify the
default interval, timeout, and retries values using the following options:

--interval=<DURATION> [default: 30s]

--timeout=<DURATION> [default: 30s]

--retries=<N> [default: 3]

Here is an example of the HEALTHCHECK instruction:

HEALTHCHECK --interval=5m --timeout=3s
 CMD curl -f http://localhost/ || exit 1

Building Images

[70]

If there is more than one HEALTHCHECK instruction in a Dockerfile, only the last
HEALTHCHECK instruction will take effect. So you can override the health check defined in
the base image. For any reason, if you choose to disable the health check defined in the base
image, you could resort to the NONE option of the HEALTHCHECK instructions, as shown
here:

HEALTHCHECK NONE

The ONBUILD instruction
The ONBUILD instruction registers a build instruction to an image and this gets triggered
when another image is built using this image as its base image. Any build instruction can be
registered as a trigger and those instructions will be triggered immediately after the FROM
instruction in the downstream Dockerfile. Thus, the ONBUILD instruction can be used for
deferring the execution of the build instruction from the base image to the target image.

The syntax of the ONBUILD instruction is as follows:

ONBUILD <INSTRUCTION>

Here, <INSTRUCTION> is another Dockerfile build instruction, which will be triggered
later. The ONBUILD instruction does not allow the chaining of another ONBUILD instruction.
In addition, it does not allow the FROM and MAINTAINER instruction as an ONBUILD trigger.

Here is an example of the ONBUILD instruction:

ONBUILD ADD config /etc/appconfig

The STOPSIGNAL instruction
The STOPSIGNAL instruction enables you to configure an exit signal for your container. It
has the following syntax:

STOPSIGNAL <signal>

Here, <signal> is either a valid signal name, such as SIGKILL, or a valid unsigned signal
number.

Building Images

[71]

The SHELL instruction
The SHELL instruction allows us to override the default shell, that is, sh on Linux and cmd
on Windows.

The syntax of the SHELL instruction is as follows:

SHELL ["<shell>", "<arg-1>", ..., "<arg-n>"]

Here, the code terms mean the following:

<shell>: The shell to be used during container runtime
<arg-1>, ..., <arg-n>: These are the variable numbers (zero or more) of the
arguments for the shell

The .dockerignore file
In the Docker's integrated image building system section, you learned that the docker build
process will send the complete build context to the daemon. In a practical environment, the
docker build context will contain many other working files and directories, which would
never be built into the image. Nevertheless, the docker build system will still send those
files to the daemon. So, you may be wondering how you can optimize the build process by
not sending these working files to the daemon. Well, the folks behind Docker too have
thought about that and have given a very simple solution, using a .dockerignore file.

The .dockerignore file is a newline-separated TEXT file, wherein you can provide the
files and the directories which are to be excluded from the build process. The exclusion list
in the file can have both the fully specified file/directory name and the wildcards.

The following snippet is a sample .dockerignore file through which the build system has
been instructed to exclude the .git directory and all the files that have the .tmp extension:

.git
*.tmp

Building Images

[72]

A brief on the Docker image management
As we saw in the previous chapter and earlier in this chapter, there are many ways of
getting a handle on a Docker image. You could download a full setup application stack
from the public repository using the docker pull subcommand. Otherwise, you could
craft your own application stack either manually using the docker commit subcommand
or automatically using Dockerfile and the docker build subcommand combination.

The Docker images are positioned as the key building blocks of the containerized
applications that in turn enable the realization of distributed applications, which will be
deployed on the cloud servers. The Docker images are built in layers, that is, the images can
be built on top of other images. The original image is called the parent image and the one
that is generated is called the child image. The base image is a bundle, which comprises an
application's common dependencies. Each change that is made to the original image is
stored as a separate layer. Each time you commit to a Docker image, you will create a new
layer on the Docker image and each change that is made to the original image will be stored
as a separate layer. As the reusability of the layers is facilitated, making new Docker images
becomes simple and fast. You can create a new Docker image by changing a single line in
Dockerfile and you do not need to rebuild the whole stack.

Now that you learned about layers in the Docker image, you may be wondering how one
could visualize these layers in a Docker image. Well, the docker history subcommand is
an excellent and handy tool for visualizing the image layers.

Here, let's see a practical example for understanding layering in the Docker images better.
For this purpose, let's follow these steps:

Here, we have Dockerfile with the instructions for automatically building the1.
Apache2 application image on top of the Ubuntu 14.04 base image. The RUN
section of the previously crafted and used Dockerfile of this chapter will be
reused in this section, as shown here:

 ###
 # Dockerfile to build an Apache2 image
 ###
 # Base image is Ubuntu
 FROM ubuntu:14.04
 # Author: Dr. Peter
 MAINTAINER Dr. Peter <peterindia@gmail.com>
 # Install apache2 package
 RUN apt-get update &&
 apt-get install -y apache2 &&
 apt-get clean

Building Images

[73]

Now, craft an image from the preceding Dockerfile using the docker build2.
subcommand, as shown here:

 $ sudo docker build -t apache2 .

Finally, let's visualize the layers in the Docker image using the docker history3.
subcommand:

 $ sudo docker history apache2

The preceding subcommand will produce a detailed report on each layer of
apache2 Docker image, as shown here:

 IMAGE CREATED CREATED BY SIZE
 aa83b67feeba 2 minutes ago /bin/sh -c apt-get
 update && apt-get inst 35.19 MB
 c7877665c770 3 minutes ago /bin/sh -c #(nop)
 MAINTAINER Dr. Peter <peter 0 B
 9cbaf023786c 6 days ago /bin/sh -c #(nop)
 CMD [/bin/bash] 0 B
 03db2b23cf03 6 days ago /bin/sh -c apt-get
 update && apt-get dist-upg 0 B
 8f321fc43180 6 days ago /bin/sh -c sed -i
 's/^#s*(deb.*universe)$/ 1.895 kB
 6a459d727ebb 6 days ago /bin/sh -c rm -rf
 /var/lib/apt/lists/* 0 B
 2dcbbf65536c 6 days ago /bin/sh -c echo
 '#!/bin/sh' > /usr/sbin/polic 194.5 kB
 97fd97495e49 6 days ago /bin/sh -c #(nop)
 ADD file:84c5e0e741a0235ef8 192.6 MB
 511136ea3c5a 16 months ago 0 B

Here, the apache2 image is made up of ten image layers. The top two layers, that is, the
layers with the aa83b67feeba and c7877665c770 image IDs are the result of the RUN and
MAINTAINER instructions in our Dockerfile. The remaining eight layers of the image will
be pulled from the repository by the FROM instruction in our Dockerfile.

Building Images

[74]

Best practices for writing a Dockerfile
An undisputable truth is that a set of best practices always plays an indispensable role in
elevating any new technology. There is a well-written section listing all the best practices
for crafting a Dockerfile. We found it incredible and hence, we wanted to share them for
your benefit. You can find them at
https://docs.docker.com/articles/dockerfile_best-practices/.

Summary
Building Docker images is a crucial aspect of the Docker technology for streamlining the
arduous journey of containerization. As indicated before, the Docker initiative has turned
out to be disruptive and transformative for the containerization paradigm, which has been
present for a while now. Dockerfile is the most prominent one for producing competent
Docker images, which can be meticulously used across. We have illustrated all the
commands, their syntax, and their usage techniques in order to empower you with all the
easy-to-grasp details, and this will simplify the image-building process for you. We have
supplied a bevy of examples in order to substantiate the inner meaning of each command.
In the next chapter, we are going to discuss the Docker Hub, which is a well-designated
store for storing and sharing the Docker images, and we will also discuss its profound
contributions towards the penetration of the containerization concept into IT enterprises.

4
Publishing Images

In the previous chapter, you learned how to build Docker images. The next logical step is to
publish these images in a public repository for public discovery and consumption. So, this
chapter focuses on publishing images on Docker Hub, and how to get the most out of
Docker Hub. We will create a new Docker image, using the commit command and a
Dockerfile, build on it, and push it to Docker Hub. The concept of a Docker trusted
repository will be discussed. This Docker trusted repository is created from GitHub or
Bitbucket, and it can then be integrated with Docker Hub to automatically build images as a
result of updates in the repository. This repository on GitHub is used to store the
Dockerfile, which was previously created. Also, we will illustrate how worldwide
organizations can enable their teams of developers to craft and contribute a variety of
Docker images to be deposited in Docker Hub. The Docker Hub REST APIs can be used for
user management and the manipulation of the repository programmatically.

The following topics are covered in this chapter:

Understanding Docker Hub
Pushing images to Docker Hub
Automatic building of images
Private repositories on Docker Hub
Creating organizations on Docker Hub
The Docker Hub REST API

Publishing Images

[76]

Understanding Docker Hub
Docker Hub is the central place used for keeping the Docker images either in a public or
private repository. Docker Hub provides features, such as a repository for Docker images,
user authentications, automated image builds, integration with GitHub or Bitbucket, and
managing organizations and groups. The Docker Registry component of Docker Hub
manages the repository for Docker images. Also, you can protect your repositories using
Docker Security Scanning, which is free as of now. This feature was first enabled in IBM
container repositories.

Docker Registry is a storage system used to store images. Automated build is a feature of
Docker Hub, which is not open source yet at the time of writing this book. The following
diagram shows the typical features:

In order to work with Docker Hub, you have to register with Docker Hub, and create an
account using the link available at h t t p s ://h u b . d o c k e r . c o m /. You can update the Docker
Hub ID, e-mail address, and password fields, as shown in the following screenshot:

Publishing Images

[77]

After completing the sign up process, you need to complete the verification received in an
e-mail. After the e-mail verification is completed, you will see something similar to the
following screenshot when you log in to Docker Hub:

Publishing Images

[78]

The creation of an account in Docker Hub has completed successfully, and now you can log
in to your Docker Hub account from https://hub.docker.com/login/, as shown in the
following screenshot:

Docker Hub also supports command-line access to Docker Hub using an Ubuntu Terminal:

$ sudo docker login

Log in with your Docker ID to push and pull images from Docker Hub. If you don't have a
Docker ID, head over to https://hub.docker.com to create one. Enter your username and
password in the Terminal:

Username: vinoddandy
Password:

Publishing Images

[79]

After a successful login, the output is as follows:

Login Succeeded

You can browse the available images in Docker Hub at https://hub.docker.com/explore/,
as follows:

Also, you can see your settings, update your profile, and get details of supported
communities, such as Twitter, Stack Overflow, #IRC, Google Groups, and GitHub.

Pushing images to Docker Hub
Here, we will create a Docker image on the local machine and push this image to Docker
Hub. You need to perform the following steps in this section:

Create a Docker image on the local machine by doing one of the following:1.

Using the docker commit subcommand
Using the docker commit subcommand with Dockerfile

Publishing Images

[80]

Pushing this created image to Docker Hub2.
Deleting the image from Docker Hub3.

We will use the ubuntu base image, run the container, add a new directory and a new file,
and then create a new image. In Chapter 3, Building Images, we saw how to create a Docker
image using Dockerfile. You may refer to that chapter to check for details of the
Dockerfile syntax.

We will run the container with the containerforhub name from the base ubuntu image,
as shown in the following Terminal code:

$ sudo docker run -i --name="containerforhub" -t ubuntu /bin/bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
952132ac251a: Pull complete
Digest:
sha256:f4691c96e6bbaa99d99ebafd9af1b68ace2aa2128ae95a60369c506dd6e6f6ab
Status: Downloaded newer image for ubuntu:latest
root@1068a1fae7da:/#

Next, we'll create a new directory and file in the containerforhub container. We will also
update the new file with some sample text to test later:

root@1068a1fae7da:/# mkdir mynewdir
root@1068a1fae7da:/# cd mynewdir
root@1068a1fae7da:/mynewdir# echo 'this is my new container to make image
and then push to hub' > mynewfile
root@1068a1fae7da:/mynewdir# cat mynewfile
this is my new container to make image and then push to hub
root@1068a1fae7da:/mynewdir#

Let's build the new image with the docker commit command from the container, which
has just been created.

The commit command will be executed from the host machine, from
where the container is running, and not from inside this container:

$ sudo docker commit -m="NewImage for second edition" containerforhub
vinoddandy/imageforhub2
sha256:619a25519578b0525b4c098e3d349288de35986c1f3510958b6246fa5d3a3f56

Publishing Images

[81]

You should use your own username of Docker Hub in place of vinoddandy to create the
image.

Now, we have a new Docker image available on the local machine with the
vinoddandy/imageforhub2 name. At this point, a new image with mynewdir and
mynewfile is created locally:

$ sudo docker images -a
REPOSITORY TAG IMAGE ID CREATED
SIZE
vinoddandy/imageforhub2 latest 619a25519578
2 minutes ago 126.6 MB

We will log in to Docker Hub using the sudo docker login command, as discussed
earlier in this chapter.

Let's push this image to Docker Hub from the host machine:

$ sudo docker push vinoddandy/imageforhub2
The push refers to a repository [docker.io/vinoddandy/imageforhub2]
0ed7a0595d8a: Pushed
0cad5e07ba33: Mounted from library/ubuntu
48373480614b: Mounted from library/ubuntu
latest: digest:
sha256:cd5a86d1b26ad156b0c74b0b7de449ddb1eb51db7e8ae9274307d27f810280c9
size: 1564

Now, we'll login to Docker Hub and verify the image in Repositories.

To test the image from Docker Hub, let's remove this image from the local machine. To
remove the image, first we need to stop the container and then delete the container:

$ sudo docker stop containerforhub
$ sudo docker rm containerforhub

We will also delete the vinoddandy/imageforhub2 image:

$ sudo docker rmi vinoddandy/imageforhub2
Untagged: vinoddandy/imageforhub2:latest
Untagged:
vinoddandy/imageforhub2@sha256:cd5a86d1b26ad156b0c74b0b7de449ddb1eb51db7e8a
e9274307d27f810280c9
Deleted:
sha256:619a25519578b0525b4c098e3d349288de35986c1f3510958b6246fa5d3a3f56

Publishing Images

[82]

We will pull the newly created image from Docker Hub, and run the new container on the
local machine:

$ sudo docker run -i --name="newcontainerforhub" -t \
vinoddandy/imageforhub2 /bin/bash
Unable to find image 'vinoddandy/imageforhub2:latest' locally
latest: Pulling from vinoddandy/imageforhub2

952132ac251a: Already exists
82659f8f1b76: Already exists
Digest:
sha256:cd5a86d1b26ad156b0c74b0b7de449ddb1eb51db7e8ae9274307d27f810280c9
Status: Downloaded newer image for vinoddandy/imageforhub2:latest

root@9dc6df728ae9:/# cat /mynewdir/mynewfile
this is my new container to make image and then push to hub
root@9dc6df728ae9::/#

So, we have pulled the latest image from Docker Hub and created the container with the
new vinoddandy/imageforhub2 image. Make a note that the Unable to find image
'vinoddandy/imageforhub2:latest' locally message confirms that the image is
downloaded from the remote repository of Docker Hub.

The text in mynewfile verifies that it is the same image that was created earlier.

Finally, we will delete the image from Docker Hub at h t t p s ://h u b . d o c k e r . c o m /r /v i n o d d a

n d y /i m a g e f o r h u b 2/ and then click on Settings and then Delete, as shown in the following
screenshot:

Publishing Images

[83]

We'll again create this image, but now using the Dockerfile process. So, let's create the
Docker image using the Dockerfile concept explained in Chapter 3, Building Images, and
push this image to Docker Hub.

The Dockerfile on the local machine is as follows:

###
Dockerfile to build a new image
###
Base image is Ubuntu
FROM ubuntu:16.04
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
create 'mynewdir' and 'mynewfile'

Publishing Images

[84]

RUN mkdir mynewdir
RUN touch /mynewdir/mynewfile
Write the message in file
 RUN echo 'this is my new container to make image and then push to hub'
 >/mynewdir/mynewfile

Now we'll build the image locally using the following command:

$ sudo docker build -t="vinoddandy/dockerfileimageforhub1" .
Sending build context to Docker daemon 16.74 MB
Step 1 : FROM ubuntu:16.04
16.04: Pulling from library/ubuntu
862a3e9af0ae: Pull complete
7a1f7116d1e3: Pull complete
Digest:
sha256:5b5d48912298181c3c80086e7d3982029b288678fccabf2265899199c24d7f89
Status: Downloaded newer image for ubuntu:16.04
---> 4a725d3b3b1c
Step 2 : MAINTAINER Dr. Peter <peterindia@gmail.com>
---> Running in 5be5edc9b970
---> 348692986c9b
Removing intermediate container 5be5edc9b970
Step 3 : RUN mkdir mynewdir
---> Running in ac2fc73d75f3
---> 21585ffffab5
Removing intermediate container ac2fc73d75f3
Step 4 : RUN touch /mynewdir/mynewfile
---> Running in c64c98954dd3
---> a6304b678ea0
Removing intermediate container c64c98954dd3
Step 5 : RUN echo 'this is my new container to make image and then push to
hub' > /mynewdir/mynewfile
---> Running in 7f6d087e29fa
---> 061944a9ba54
Removing intermediate container 7f6d087e29fa
Successfully built 061944a9ba54

We'll run the container using this image, as shown here:

$ sudo docker run -i --name="dockerfilecontainerforhub" -t
vinoddandy/dockerfileimageforhub1 /bin/bash

root@236bfb39fd48:/# cat /mynewdir/mynewfile
this is my new container to make image and then push to hub

This text in mynewdir confirms that the new image is built properly with a new directory
and a new file.

Publishing Images

[85]

Repeat the login process in Docker Hub and push this newly created image:

$ sudo docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username (vinoddandy): vinoddandy
Password:
Login Succeeded

$ sudo docker push vinoddandy/dockerfileimageforhub1
The push refers to a repository
[docker.io/vinoddandy/dockerfileimageforhub1]
92e394693590: Pushed
821a2be25576: Pushed
dca059944a2e: Pushed
ffb6ddc7582a: Mounted from library/ubuntu
344f56a35ff9: Mounted from library/ubuntu
530d731d21e1: Mounted from library/ubuntu
24fe29584c04: Mounted from library/ubuntu
102fca64f924: Mounted from library/ubuntu
latest: digest:
sha256:c418c88f260526ec51ccb6422e2c90d0f6fc16f1ab81da9c300160d0e0f7bd87
size: 1979

Finally, we can verify the availability of the image on Docker Hub:

Publishing Images

[86]

Automating the build process for images
You learned how to build images locally and push these images to Docker Hub. Docker
Hub also has the capability to automatically build the image from the Dockerfile kept in
the repository of GitHub or Bitbucket. Automated builds are supported on both the private
and public repositories of GitHub and Bitbucket. The Docker Hub Registry keeps all the
automated build images. The Docker Hub Registry is open source and can be accessed from
https://github.com/docker/docker-registry.

We will discuss the steps needed to implement the automated build process:

We first connect Docker Hub to our GitHub account.1.
Log in to Docker Hub from https://hub.docker.com/login/, click on2.
Create, and then navigate to Create Automated Build, as shown in the following
screenshot:

Publishing Images

[87]

We'll now select Link Accounts:3.

Once GitHub is selected, we will select Public and Private (Recommended), as4.
shown here:

After clicking on Select, your GitHub repository will now be shown.

Publishing Images

[88]

Now, provide the GitHub credentials to link your GitHub account with Docker5.
Hub and select Sign in:

Publishing Images

[89]

After a successful login, the Linked Accounts & Services screen looks like the6.
following screenshot:

So, whenever the Dockerfile is updated in GitHub, the automated build gets triggered
and a new image will be stored in the Docker Hub Registry. We can always check the build
history. We can change the Dockerfile on the local machine and push it to GitHub. Now,
we can see the automated build link of Docker Hub at
https://hub.docker.com/r/vinoddandy/dockerautomatedbuild/builds/:

Publishing Images

[90]

Private repositories on Docker Hub
Docker Hub provides both public and private repositories. The public repository is free to
users and the private ones are a paid service. Plans with private repositories are available in
different sizes, such as micro, small, medium, or large subscriptions.

Docker has published its public repository code to open source at h t t p s ://g i t h u b . c o m /d o c

k e r /d o c k e r - r e g i s t r y .

Normally, enterprises will not like to keep their Docker images either in a Docker public or
private repository. They prefer to keep, maintain, and support their own repository. Hence,
Docker also provides the option for enterprises to create and install their own repository.

Let's create a repository in the local machine using the registry image provided by
Docker. We will run the registry container on the local machine, using the registry image
from Docker:

$ sudo docker run -p 5000:5000 -d registry
768fb5bcbe3a5a774f4996f0758151b1e9917dec21aedf386c5742d44beafa41

In the automated build section, we built the vinoddandy/dockerfileimageforhub1
image. Let's tag the 224affbf9a65 image ID to our locally created registry image. This
tagging of the image is needed for unique identification inside the local repository. This
image registry may have multiple variants in the repository, so this tag will help you
identify the particular image:

$ sudo docker tag 224affbf9a65 \
localhost:5000/vinoddandy/dockerfileimageforhub1

Once the tagging is done, push this image to a new registry using the docker push
command:

$ sudo docker push localhost:5000/vinoddandy/dockerfile
imageforhub1
The push refers to a repository
[localhost:5000/vinoddandy/dockerfileimageforhub1
] (len: 1)
Sending image list
Pushing repository localhost:5000/vinoddandy/dockerfileimageforhub1 (1
tags)
511136ea3c5a: Image successfully pushed
d497ad3926c8: Image successfully pushed
--
224affbf9a65: Image successfully pushed

Publishing Images

[91]

Pushing tag for rev [224affbf9a65] on
{http://localhost:5000/v1/repositories/vinoddandy/dockerfileimageforhub1/ta
gs/latest}

Now, the new image is available in the local repository. You can retrieve this image from
the local registry and run the container. This task is left for you to complete.

Organizations and teams on Docker Hub
One of the useful aspects of private repositories is that you can share them only with
members of your organization or team. Docker Hub lets you create organizations, where
you can collaborate with your colleagues and manage private repositories. You will learn
how to create and manage an organization next.

The first step is to create an organization on Docker Hub
at https://hub.docker.com/organizations/add/, as shown in the following screenshot:

Publishing Images

[92]

Inside your organization, you can add more organizations, and then add members to it:

The members of your organization and group can collaborate with the organization and
teams. This feature will be more useful in the case of a private repository.

The REST API for Docker Hub
Docker Hub provides a REST API to integrate the Hub capabilities through programs. The
REST API is supported for both user and repository management.

User management supports the following features:

User Login: This is used for user login to Docker Hub:

 GET /v1/users
 $ curl --raw -L --user vinoddandy:password
 https://index.docker.io/v1/users
 4
 "OK"
 0

User Register: This is used for the registration of a new user:

 POST /v1/users

Publishing Images

[93]

Update user: This is used to update the user's password and e-mail:

 PUT /v1/users/(username)/

Repository management supports the following features:

Create a user repository: This creates a user repository:

 PUT /v1/repositories/(namespace)/(repo_name)/
 $ curl --raw -L -X POST --post301 -H
 "Accept:application/json" -H "Content-Type:
 application/json" --data-ascii '{"email":
 "singh_vinod@yahoo.com", "password": "password",
 "username": "singhvinod494" }'
 https://index.docker.io/v1/users
 e
 "User created"
 0

After you create repositories, your repositories will be listed here, as shown in this
screenshot:

Delete a user repository: This deletes a user repository:

 DELETE /v1/repositories/(namespace)/(repo_name)/

Create a library repository: This creates a library repository, and it is available
only to Docker administrators:

 PUT /v1/repositories/(repo_name)/

Delete a library repository: This deletes a library repository, and it is available
only to Docker administrators:

 DELETE /v1/repositories/(repo_name)/

Update user repository images: This updates the images of a user's repository:

 PUT /v1/repositories/(namespace)/(repo_name)/images

List user repository images: This lists the images in a user's repository:

 GET /v1/repositories/(namespace)/(repo_name)/images

Publishing Images

[94]

Update library repository images: This updates the images in a library
repository:

 PUT /v1/repositories/(repo_name)/images

List library repository images: This lists the images in a library repository:

 GET /v1/repositories/(repo_name)/images

Authorize a token for a library repository: This authorizes a token for a library
repository:

 PUT /v1/repositories/(repo_name)/auth

Authorize a token for a user repository: This authorizes a token for a user's
repository:

 PUT /v1/repositories/(namespace)/(repo_name)/auth

Summary
Docker images are the most prominent building blocks used for deriving real-world Docker
containers that can be exposed as a service over any network. Developers can find and
check images for their unique capabilities, and use them accordingly for their own purposes
in bringing up highly usable, publicly discoverable, network-accessible, and cognitively
composable containers. All crafted images need to be put in a public registry repository. In
this chapter, we clearly explained how to publish images in a repository. We also talked
about trusted repositories and their distinct characteristics. Finally, we demonstrated how
the REST API for the repository can be leveraged to push in and play around with Docker
images and user management, programmatically.

Docker images need to be stored in a public, controlled, and network-accessible location to
be readily found and leveraged by worldwide software engineers and system
administrators. Docker Hub is being touted as the best-in-class method to centrally
aggregate, curate, and manage Docker images, originating from Docker enthusiasts
(internal as well as external). However, enterprises cannot afford to keep their Docker
images in a public domain, and hence the next chapter is dedicated to explaining the steps
needed for image deployment and management in private IT infrastructures.

5
Running Your Private Docker

Infrastructure
In Chapter 4, Publishing Images, we discussed Docker images and clearly explained that
Docker containers are the runtime implementations of Docker images. Docker images and
containers are plenty these days as the containerization paradigm has taken the IT domain
by storm. Therefore, there is a need for worldwide enterprises to keep their Docker images
in their own private infrastructure for security considerations. So, the concept of deploying
Docker Hub to our own infrastructure has emerged and evolved. Docker Hubs are
paramount and pertinent to registering and then depositing the growing array of Docker
images. Primarily, Docker Hub is specially made to centralize and centrally manage
information on the following:

User accounts
Checksums of the images
Public namespaces

This chapter is developed with a focus on providing all the relevant information to enable
you and the Docker container crafters to design, populate, and run your own private
Docker Hubs in your own backyards. This chapter covers the following important topics:

Docker Registry
Docker Registry use cases
Running your own Docker Registry and pushing the image to a newly created
registry
Webhook notifications
Docker Registry HTTP API support

Running Your Private Docker Infrastructure

[96]

Docker Registry
The Docker Registry implementation has completely changed from the previous version
mentioned in the earlier edition of this book. Docker Registry 2.0 is the new implementation
for storing and distributing Docker images. It supersedes the previous Docker Registry
implementation (h t t p s ://g i t h u b . c o m /d o c k e r /d o c k e r - r e g i s t r y). The new
implementation is available at https://github.com/docker/distribution. This is open
source under the Apache license. The registry is a stateless, highly scalable server-side
application that stores and lets you distribute Docker images. The Docker Registry index is
deprecated in the new release. Previously, the Docker Registry used index internally to
authenticate the user.

Docker Registry 2.0 is completed, new, and implemented in Go and supports the Docker
Registry HTTP API v2. The current Docker Hub (h t t p s ://h u b . d o c k e r . c o m) is based on the
new Docker Registry 2.0 with Docker Engine 1.6 or above. This makes it more reliable and
transparent to its users. All cloud providers have adopted this new Docker Registry
including AWS and IBM.

The new registry implementation provides the following benefits:

Faster push and pull
Secure and efficient implementation
Simplified deployment
Pluggable storage backend
Webhook notifications

The general architecture of Docker Registry shows, as in the following image, how it is
integrated with Nginx at frontend and storage at backend:

Running Your Private Docker Infrastructure

[97]

The salient features of the registry are as follows:

The registry is compatible with Docker Engine version 1.6.0 or higher.
The default storage driver is the local POSIX filesystem, which is suitable for
development or small deployments. It also supports different storage backends
(S3, Microsoft Azure, OpenStack Swift, and Aliyun OSS).
It natively supports TLS and basic authentication.
In the new version, the registry also supports a robust notification system. The
registry supports sending Webhook notifications in response to events happening
within the registry. Notifications are sent in response to manifest pushes and
pulls and layer pushes and pulls. These actions are serialized into events. The
events are queued into a registry-internal broadcast system, which queues and
dispatches events to endpoints (h t t p s ://d o c s . d o c k e r . c o m /r e g i s t r y /n o t i f i c a

t i o n s /#e n d p o i n t s).

The latest Docker Registry releases two options:

Docker Trusted Registry
Docker Registry

Running Your Private Docker Infrastructure

[98]

Let's talk about the two options in detail:

Docker Trusted Registry (DTR): This is the enterprise grade solution from
Docker. DTR supports high availability and is installed on the Docker Universal
Control Plane (UCP) cluster. The details are available at the following website:
h t t p s ://d o c s . d o c k e r . c o m /d o c k e r - t r u s t e d - r e g i s t r y /.

DTR supports image management and it has built-in security and access control.
It can also be integrated with LDAP and Active Directory (AD) and supports
Role Based Access Control (RBAC).

The general architecture of DTR is shown in the following diagram:

DTR has a built-in authentication mechanism. DTR running on a node consists of
the following containers:

dtr-api-<replica_id>: Executes the DTR business logic. It serves
the DTR web application, and API.
dtr-garant-<replica_id>: Manages DTR authentication.
dtr-jobrunner-<replica_id>: Runs cleanup jobs in the
background.
dtr-nautilusstore-<replica_id>: Stores security scanning data.
dtr-nginx-<replica_id>: Receives HTTP and HTTPS requests and
proxies them to other DTR components. By default it listens to ports 80
and 443 of the host.

Running Your Private Docker Infrastructure

[99]

dtr-notary-server-<replica_id>: Receives, validates, and serves
content trust metadata, and is consulted when pushing or pulling to
DTR with content trust enabled.
dtr-notary-signer-<replica_id>: Performs server-side
timestamp and snapshot signing for content trust metadata.
dtr-registry-<replica_id>: Implements the functionality for
pulling and pushing Docker images. It also handles how images are
stored.
dtr-rethinkdb-<replica_id>: A database for persisting repository
metadata.

DTR uses the following internal named volumes for persistence of data:

dtr-ca: The private keys and certificates are stored here
dtr-etcd: This is used by etcd for storing DTR internal configurations
dtr-registry: This is the volume where images are stored
dtr-rethink: This is used by RethinkDB to persist DTR data, such
as users and repositories

By default, DTR stores the images on the local filesystem of the host machine. For
highly available installations of DTR, it supports cloud storage or network
filesystems also. DTR can be configured to support Amazon S3, OpenStack Swift,
and Microsoft Azure.

Docker Registry: The registry is a stateless, highly scalable server-side
application that stores and distributes Docker images. The registry is open
source, under the permissive Apache License (h t t p ://e n . w i k i p e d i a . o r g /w i k i

/A p a c h e _ L i c e n s e).

In this book, we will focus on the second option of the open source Docker Registry.

Docker Registry use cases
Docker Registry stores the Docker images and provides the basic functionalities of pulling,
pushing, and deleting the images. In a typical workflow, a commit to your source revision
control system would trigger a build on your CI system, which would then push a new
image to your registry if the build is successful. A notification from the registry would then
trigger a deployment on a staging environment or notify other systems that a new image is
available.

Running Your Private Docker Infrastructure

[100]

Docker Registry is used when the user needs to do the following:

Tighten control where images are kept
Own the images distribution pipeline
Integrate image storage and distribution with the backend development
workflow

The important use cases of registry are as follows:

Pull or download an image: The user requests an image using the Docker client
from Docker Registry, the registry in turn responds back to the user with the
registry details. Then, the Docker client will directly request the registry to get the
required image. The registry authenticates the user with an index internally.
Push or upload an image: A user requests to push the image, gets the registry
information, and then pushes the image directly to the registry. The registry
authenticates the user and finally, responds to the user.
Delete an image: The user can also request to delete an image from the
repository.

The user has the option to use the registry with or without the index. Using the
registry without the index is best suited for storing private images.

In addition to the preceding use cases, Docker Registry also supports version control for
images. It can be integrated with Continuous Integration (CI) and Continuous
Development (CD) systems. When a new image is successfully pushed to the registry, then
a notification from the registry will trigger a deployment on a staging environment or notify
other systems that a new image is available.

In Docker Registry V2, the following new use cases are also supported:

Image verification: Docker Engine would like to run the verified image so it
wants to ensure that the image is downloaded from a trusted source and no
tampering has occurred. Docker Registry V2 returns a manifest and Docker
Engine verifies the manifest's signature before downloading the image. After
each layer is downloaded, the Engine verifies the digest of the layer ensuring that
the content is as specified by the manifest.
Resumable push: It is possible to lose network connectivity while uploading the
image to Docker Registry. Now, Docker Registry has the ability to inform Docker
Engine that the file upload has already started. Therefore, Docker Engine will
respond by only sending the remaining data to complete the image upload.

Running Your Private Docker Infrastructure

[101]

Resumable pull: When downloading an image, the connection is interrupted
before the completion. Docker Engine keeps the partial data and requests to
avoid downloading the repeated data. This is implemented as the HTTP range
requests.
Layer upload deduplication: Company Y's build system creates two identical
Docker layers from build processes A and B. Build process A completes
uploading the layer before B. When process B attempts to upload the layer, the
registry indicates that it's not necessary because the layer is already known. If
processes A and B upload the same layer at the same time, both the operations
will proceed and the first to complete will be stored in the registry (note that we
may modify this to prevent dogpile with some locking mechanism).

This is the reason why Docker Registry V2 needs Docker Engine version
1.6 or above to support these features.

Running Docker Registry and pushing the
image
It is fairly easy to install and run Docker Registry, but operating in a production
environment requires other non-functional requirements also such as security, availability,
and scalability. Also, logging and log processing, systems monitoring, and Security 101 are
the required features for production grade systems. Most of the providers use DTR, as
explained earlier in the production system. However, Docker Registry is good enough to
use in your non-production environment preferably in the intranet environment.

In this section, we will use the Ubuntu 14.04 machine to install, run, and test Docker
Registry. Docker Engine will be installed as described in Chapter 1, Getting Started with
Docker. We will perform the following steps to run our own registry, and finally, push the
image:

Running Docker Registry on localhost: Like most servers, Docker Registry does1.
not need to be installed on client systems where Docker client is running. Docker
Registry can be installed to any server which supports Docker and is network
reachable. So multiple Docker clients can access the running Docker Registry.

Docker Registry accepts the connection on TCP port 5000, so this is not blocked
by the firewall in your system.

Running Your Private Docker Infrastructure

[102]

If you push a lot of images to Docker Registry, they will fill up the space quickly,
so it is recommended that you configure enough space where the images are kept.
On the local file system, the storage path is normally /var/lib/registry.

Start the registry: The following command downloads the registry image from2.
Docker Hub and starts a container in the background:

 $ sudo docker run -d -p 5000:5000 \
 --restart=always --name registry registry:2
 Unable to find image 'registry:2' locally
 2: Pulling from library/registry
 df53ce740974: Pull complete
 9ce080a7bfae: Pull complete
 Digest:
 sha256:1cfcd718fd8a49fec9ef16496940b962e30e39
 27012e851f99905db55f1f4199
 Status: Downloaded newer image for registry:2
 8e5c4b02a43a033ec9f6a38072f58e6b06b87570ba951b3cce5
 d9a031601656e

Check Docker Registry is running on localhost: The following command3.
verifies that Docker Registry is up and running at port 5000 on localhost:

 $ sudo docker ps -a
 CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS
 NAMES
 8e5c4b02a43a registry:2 "/entrypoint.sh /etc/"
 3 minutes ago Up 3 minutes 0.0.0.0:5000->5000/tcp
 registry

Get and tag the image: The most common image to test Docker is the hello-4.
world image available from Docker Hub. Pull the image from the local registry:

 $ sudo docker pull hello-world
 Using default tag: latest
 latest: Pulling from library/hello-world

 c04b14da8d14: Pull complete
 Digest:
 sha256:0256e8a36e2070f7bf2d0b0763dbabdd677985124
 11de4cdcf9431a1feb60fd9
 Status: Downloaded newer image for
 hello-world:latest

Running Your Private Docker Infrastructure

[103]

The following command tags the image with localhost:5000:

 $ sudo docker tag hello-world
 localhost:5000/hello-world

Finally, the list of images available on the localhost machine are as follows:

 $ sudo docker images
 REPOSITORY TAG IMAGE ID
 CREATED SIZE
 registry 2 541a6732eadb
 2 days ago 33.3 MB
 localhost:5000/hello-world latest c54a2cc56cbb
 12 weeks ago 1.848 kB
 hello-world latest c54a2cc56cbb
 12 weeks ago 1.848 kB

Push the image: This hello-world image can now be pushed to the newly5.
created Docker Registry:

 $ sudo docker push localhost:5000/hello-world
 The push refers to a repository [localhost:5000/
 hello-world]
 a02596fdd012: Pushed
 latest: digest:
 sha256:a18ed77532f6d6781500db650194e0f9396ba5f
 05f8b50d4046b294ae5f83aa4 size: 524

Pull the image: This hello-world image can now be pulled back from the6.
newly created Docker Registry:

 $ sudo docker pull localhost:5000/hello-world
 Using default tag: latest
 latest: Pulling from hello-world

 Digest:
 sha256:a18ed77532f6d6781500db650194e0f9396ba5f0
 5f8b50d4046b294ae5f83aa4
 Status: Downloaded newer image for localhost:5000/
 hello-world:latest

Running Your Private Docker Infrastructure

[104]

Stop Docker Registry and delete: Now use the following command to stop and7.
delete Docker Registry:

 $ sudo docker stop registry && sudo docker \
 rm -v registry
 registry
 registry

Storage: Docker Registry retains all the registry data as Docker volume on the8.
host filesystem. The Docker volume can be mounted on the /var/lib/registry
path, and use the following command to direct Docker Registry to point to this
path:

 $ sudo docker run -d -p 5000:5000 \
 --restart=always --name registry -v \
 `pwd`/data:/var/lib/registry registry:2
 Unable to find image 'registry:2' locally
 2: Pulling from library/registry
 517dc3530502: Pull complete
 Digest: sha256:1cfcd718fd8a49fec9ef16496940b962e30e
 3927012e851f99905db55f1f4199
 Status: Downloaded newer image for registry:2
 5c0ea3042397720eb487f1c3fdb9103ebb0d149421aa114a
 8c5a9133f775332a

The storage drivers can be configured for inmemory, s3, azure, swift,
oss, and gcs:
https://github.com/docker/distribution/blob/master/docs/storage-

drivers/index.md.

Running the Docker Registry on localhost
with an SSL certificate
In this section, we will emulate the concept of running Docker Registry securely using SSL.
In the current scenario of running Docker Registry on localhost, Docker Engine needs to be
secured using TLS.

Running Your Private Docker Infrastructure

[105]

Follow these steps to run Docker Registry securely:

Getting certificates: We will be using self-signed certificates for TLS certificates.1.
First create the certs directory, then run the openssl command:

 $ mkdir certs
 $ openssl req -newkey rsa:4096 -nodes -sha256 \
 -keyout certs/domain.key -x509 -days 365 -out \
 certs/domain.crt
 Generating a 4096 bit RSA private key
 ++
 ..
 ++
 writing new private key to 'certs/domain.key'

 You are about to be asked to enter information
 that will be incorporated into your certificate
 request.
 What you are about to enter is what is called a
 Distinguished Name or a DN.
 There are quite a few fields but you can leave
 some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]:US
 State or Province Name (full name) [Some-State]:
 Locality Name (eg, city) []:
 Organization Name (eg, company)
 [Internet Widgits Pty Ltd]:
 Organizational Unit Name (eg, section) []:
 Common Name (e.g. server FQDN or YOUR name)
 []:myregistrydomain.com
 Email Address []:
 $

Copy the certs directory to the certificates directory of Ubuntu 16.o4 in2.
the /usr/local/share/ca-certificates path. This path is specific to Ubuntu
(Debian) systems and you may need to use a different path if using Red Hat
systems:

 $ sudo cp certs/domain.crt \
 /usr/local/share/ca-certificates/myregistrydomain.com.crt
 $ sudo update-ca-certificates

Also copy the domain.crt file to
/etc/docker/certs.d/myregistrydomain.com:5000/ca.crt.

Running Your Private Docker Infrastructure

[106]

Ensure to create the certs.d and myregistrydomain.com:5000
directories before running the preceding command.

Restart Docker Engine:3.

 $ sudo service docker restart

Docker Registry can be started, as follows, in the secure mode:4.

 $ sudo docker run -d -p 5000:5000 \
 --restart=always --name registry \
 > -v `pwd`/certs:/certs
 > -e REGISTRY_HTTP_TLS_CERTIFICATE=
 /certs/domain.crt
 > -e REGISTRY_HTTP_TLS_KEY=/certs/domain.key
 > registry:2
 Unable to find image 'registry:2' locally
 2: Pulling from library/registry

 c0cb142e4345: Pull complete
 a5002dfce871: Pull complete
 df53ce740974: Pull complete
 Digest: sha256:1cfcd718fd8a49fec9ef16496940b962e30e
 3927012e851f99905db55f1f4199
 Status: Downloaded newer image for registry:2
 d7c41de81343313f6760c2231c037008581adf07acceea
 0b3372ec2c05a5a321
 $

Now you should be able to push the images from the remote Docker host:5.

 docker pull ubuntu
 docker tag ubuntu myregistrydomain.com:5000/ubuntu

Point your myregistrydomain.com to localhost (127.0.0.1) by updating
/etc/hosts by adding 127.0.0.1 myregistrydomain.com.

 docker push myregistrydomain.com:5000/ubuntu
 docker pull myregistrydomain.com:5000/ubuntu

Running Your Private Docker Infrastructure

[107]

Running Docker Registry with restrictions
The security of Docker Registry is very vital. It is recommended that you run it behind the
secure firewall and Intrusion Protection System (IPS) / Intrusion Defense System (IDS) in
a secure network. Also, it is assumed that registry will only accept a secure connection on
HTTPS. In addition to these, Docker Registry can provide access restriction, and the
simplest way to implement this is through basic authentication. The basic authentication is
standard authentication with web servers using a login name and password:

$ mkdir auth
$ sudo docker run --entrypoint htpasswd
registry:2 -Bbn testvinod testpassword > auth/htpasswd
$

Here we list out the steps to be done for securely accessing Docker Registry:

Since we are running this registry in the secure mode, use a self-signed certificate1.
and enable TLS.
Also, restart the Docker process to get the updated configuration.2.
Now rerun the registry and make sure the current running registry is stopped:3.

 $ sudo docker run -d -p 5000:5000 --restart=always \
 --name registry \
 > -v `pwd`/auth:/auth
 > -e "REGISTRY_AUTH=htpasswd"
 > -e "REGISTRY_AUTH_HTPASSWD_REALM=Registry Realm"
 > -e REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd
 > -v `pwd`/certs:/certs
 > -e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt
 > -e REGISTRY_HTTP_TLS_KEY=/certs/domain.key
 > registry:2

The user needs to log in from a remote machine to test registry user4.
authentication:

 $ sudo docker login myregistrydomain.com:5000
 Username: testuser
 Password:testpassword

 Login Succeeded

Running Your Private Docker Infrastructure

[108]

Push and pull the images from the remote machine:5.

 $ sudo docker pull ubuntu
 Using default tag: latest
 latest: Pulling from library/ubuntu
 cad964aed91d: Pull complete
 3a80a22fea63: Pull complete
 Digest:
sha256:28d4c5234db8d5a634d5e621c363d900f8f241240ee0a6a978784c978fe9c737
 Status: Downloaded newer image for ubuntu:latest
 ubuntu@ip-172-30-0-126:~$ sudo docker tag ubuntu
 myregistrydomain.com:5000/ubuntu
 $ sudo docker push myregistrydomain.com:5000/ubuntu
 The push refers to a repository
 [myregistrydomain.com:5000/ubuntu]
 f215f043863e: Pushed
 0c291dc95357: Pushed
 latest: digest:
sha256:68ae734b19b499ae57bc8d9dd4c4f90d5ff17cfe801ffbd7b840b120f
d61d3b4 size: 1357
 $ sudo docker rmi myregistrydomain.com:5000/ubuntu
 Untagged: myregistrydomain.com:5000/ubuntu:latest
 Untagged:
myregistrydomain.com:5000/ubuntu@sha256:68ae734b19b499ae57bc8d9dd4c4f90d5ff
17cfe801ffbd7b840b120fd61d3b4
 $ sudo docker pull myregistrydomain.com:5000/ubuntu
 Using default tag: latest
 latest: Pulling from ubuntu
 Digest:
sha256:68ae734b19b499ae57bc8d9dd4c4f90d5ff17cfe801ffbd7b840b120fd61d3b4
 Status: Downloaded newer image for
 myregistrydomain.com:5000/ubuntu:latest

Managing Docker Registry with Docker
Compose
As Docker Registry grows more complex, dealing with its configuration will be tedious. So
it is highly recommended that you use Docker Compose. Docker Compose will be
discussed later in Chapter 8, Orchestrating Containers.

Running Your Private Docker Infrastructure

[109]

The docker-compose.yml file is created as follows:

registry:
 image: registry:2
 ports:
 - 5000:5000
 environment:
 REGISTRY_HTTP_TLS_CERTIFICATE: /certs/domain.crt
 REGISTRY_HTTP_TLS_KEY: /certs/domain.key
 REGISTRY_AUTH: htpasswd
 REGISTRY_AUTH_HTPASSWD_PATH: /auth/htpasswd
 REGISTRY_AUTH_HTPASSWD_REALM: Registry Realm
 volumes:
 - /path/data:/var/lib/registry
 - /path/certs:/certs
 - /path/auth:/auth

Now, run the command to run the registry:

$ sudo docker-compose up -d
Creating ubuntu_registry_1

This ensures Docker Registry is up and running again.

Load balancing consideration
In the enterprise deployments of Docker Registry, the load balancer is required to distribute
loads across registry clusters. To make load balancer work correctly, we need to consider
storage driver, HTTP secret, and Redis cache (if configured) to be same for the cluster of
registries. If any of these parameters are different, the registry will have trouble serving the
requests.

For example, the storage driver used for Docker images should be the same across all
instances of registry. If a particular mount point is used as a filesystem, it should be
accessible and attached to all instances of registries. Similarly, if an S3 or IBM object storage
is used, registries should be able to access the same storage resource. The HTTP secret
coordinates uploads also must be the same across instances. Actually, configuring different
Redis cache for different registry instances may work as of now. However, this is not a good
practice and it will be expensive in terms of more requests being redirected to the backend.

Running Your Private Docker Infrastructure

[110]

Webhook notifications
Docker Registry has the in-built capability of sending notifications based on registry
activities:

Notifications are sent to the endpoints via HTTP. This complete notification is based on the
listener and broadcaster architecture. Each endpoint has its own queue and all actions
(push/pull/delete) trigger the events. These events are queued and once the event reaches
the end of the queue, it triggers an HTTP request to the endpoint. The events are sent to
each endpoint, but the order is not guaranteed.

Running Your Private Docker Infrastructure

[111]

Events have a well-defined JSON structure and are sent as the body of the notification. One
or more events are sent in the structure and are called an envelope. An envelope may
contain one or more events. The registry is also capable of receiving responses from
endpoints. The responses with 2XX or 3XX response codes are considered as valid
responses and consider the message delivered.

Docker Registry HTTP API support
Docker Registry has an HTTP interface to interact with Docker Engine. This is used to
manage information about Docker images and enable their distribution.

The key update from V1 is the set of changes in the Docker image format and concept of
signed manifest. The new, self-contained image manifest simplifies image definition and
improves security. This specification will build on that work, leveraging new properties of
the manifest format to improve performance, reduce bandwidth usage, and decrease the
likelihood of backend corruption.

The complete documentation of the Docker Registry V2 APIs can be found here:
https://github.com/docker/distribution/blob/master/docs/spec/api.md.

The important APIs are discussed here:

API version check:

GET /v2/: This API provides version support information based on its
response statuses.

Here is the curl command to check the Docker Registry API version:

 $ curl -i http://localhost:5000/v2/
 HTTP/1.1 200 OK
 Content-Length: 2
 Content-Type: application/json; charset=utf-8
 Docker-Distribution-Api-Version: registry/2.0
 X-Content-Type-Options: nosniff
 Date: Mon, 21 Nov 2016 18:37:06 GMT

The supported error codes are 401 Unauthorized and 404 Not Found.

Running Your Private Docker Infrastructure

[112]

Listing repositories:

GET /v2/_catalog: This API provides the content of repositories.

Here is the curl command to get the contents of repository:

 $ curl -i http://localhost:5000/v2/_catalog
 HTTP/1.1 200 OK
 Content-Type: application/json; charset=utf-8
 Docker-Distribution-Api-Version: registry/2.0
 X-Content-Type-Options: nosniff
 Date: Mon, 21 Nov 2016 18:36:42 GMT
 Content-Length: 33
 {"repositories":["hello-world"]}

The reader may recall that while starting Docker Registry, we uploaded only one
file.

Pulling an image: The Docker image mainly consists of two parts—a JSON
manifest and individual layer files.

Pulling an image manifest can be fetched using the following URL:

 GET /v2/<name>/manifests/<reference>

Here is the curl command to get the image manifest details.

 curl -i http://localhost:5000/v2/
 hello-world/manifests/latestHTTP/1.1 200 OK
 Content-Length: 2742
 Content-Type: application/vnd.docker.distribution.
 manifest.v1+prettyjws
 Docker-Content-Digest:
 sha256:f18d040ea7bf47c7ea8f7ff1a8682811cf375
 51c747158e37b9c75f5450e6fac
 Docker-Distribution-Api-Version: registry/2.0
 Date: Mon, 21 Nov 2016 18:54:05 GMT
 {
 "schemaVersion": 1,
 "name": "hello-world",
 "tag": "latest",
 "architecture": "amd64",
 "fsLayers": [

Running Your Private Docker Infrastructure

[113]

 {
 "blobSum":
 "sha256:a3ed95caeb02ffe68cdd9fd8440
 6680ae93d633cb16422d00e8a7c22955b46d4"
 },
 {
 "blobSum":
 "sha256:c04b14da8d1441880ed3fe6106fb2cc
 6fa1c9661846ac0266b8a5ec8edf37b7c"
 }
],
 "history": [
 }{
 "v1Compatibility": "----
 }
],
 "signatures":[
 {
 "----------------"
 }
]
 }

Pulling the layers of an image stored in blob:

 GET /v2/<name>/blobs/<digest>

This will be an exercise for the reader to download the image using <digest>
received in the preceding pulling manifest API.

A list of methods and URIs are covered in the following table:

Method Path Entity Description

GET /v2/ Base Check that the endpoint
implements the Docker
Registry API V2

GET /v2/<name>/tag/list Tags Fetch the tags under the
repository identified by
name

Running Your Private Docker Infrastructure

[114]

GET /v2/<name>/manifests/<reference> Manifest Fetch the manifest
identified by name and
reference, where
reference can be a tag or
digest

PUT /v2/<name>/manifests/<reference> Manifest Put the manifest
identified by name and
reference, where
reference can be a tag or
digest

Delete /v2/<name>/manifests/<reference> Manifest Delete the manifest
identified by name and
reference, where
reference can be a tag or
digest

GET /v2/<name>/blobs/<digest> Blob Retrieve the blob from
the registry identified by
a digest

DELETE /v2/<name>/blobs/<digest> Blob Delete the blob from the
registry identified by a
digest

POST /v2/<name>/blobs/uploads Initiate
blob
upload

Initiate a resumable blob
upload; if successful, an
upload location will be
provided to complete the
upload

GET /v2/<name>/blobs/uploads/<uuid> Blob
upload

Retrieve the status of
upload identified by
uuid

PATCH /v2/<name>/blobs/uploads/<uuid> Blob
upload

Update a chunk of data
for the specified upload

PUT /v2/<name>/blobs/uploads/<uuid> Blob
upload

Complete the upload
specified by uuid

Running Your Private Docker Infrastructure

[115]

DELETE /v2/<name>/blobs/uploads/<uuid> Blob
upload

Cancel outstanding
upload processes,
releasing associated
resources

GET /v2/_catalog Catalog Retrieve a sorted JSON
list of repositories from
the registry

Summary
Docker Engine allows every value-adding software solution to be containerized, indexed,
registered, and stocked. Docker is turning out to be a great tool for systematically
developing, shipping, deploying, and running containers everywhere. While docker.io
lets you upload your Docker creations to its registry for free, anything you upload there is
publicly discoverable and accessible. Innovators and companies aren't keen on this and
therefore insist on private Docker Hubs. In this chapter, we explained all the steps,
syntaxes, and semantics for you in an easy-to-understand manner. We showed how to
retrieve images to generate Docker containers, and described how to push our images to
Docker Registry in a secure manner in order to be found and used by authenticated
developers. The authentication and authorization mechanisms, a major part of the whole
process, have been explained in detail. Precisely speaking, this chapter is conceived and
concretized as a guide for setting up your own Docker Hubs. As world organizations are
showing exemplary interest in having containerized clouds, private container hubs are
becoming more essential.

At this point in time, we understand that distribution and management of Docker images is
possible using Docker Hub, DTR, and the Docker open source registry. Both Docker Hub
and DTR are commercial products that incorporate the open source registry capabilities into
their respective solutions. Docker Hub is a multi-tenant service while DTR and the open
source registry provide users with the option to host private registries behind their own
firewall or a dedicated cloud environment.

In the next chapter, we will dive deep into containers, which is the natural progression from
images. We will demonstrate the capability to run services, such as a web server in a Docker
container and its interaction with the host machine and the outside world.

6
Running Services in a

Container
We have come thus far by carefully explaining the various aspects of the Docker
technology. The previous chapters definitely have laid down a stellar foundation for the
overwhelmingly accepted Docker platform and the forthcoming chapters will be like the
meticulously crafted buildings on that grandiose foundation.

We described the important building blocks (the highly usable and reusable Docker images)
to bring forth powerful Docker containers. There are briefs about the various easy-to-learn-
and-employ techniques and tips on how to store and share Docker images through a well-
designed storage framework. Typically, images have to go through a series of verifications,
validations, and refinements constantly in order to be right and relevant for the aspiring
development community.

In this chapter, we are going to take our learning to the next level by detailing the key steps
in creating a small web server, run the same inside a container, and enable outsiders to
connect to the containerized web server through the Internet.

In this chapter, we will cover the following topics:

Container networking
Container as a Service (CaaS) – building, running, exposing, and connecting to
container services
Publishing and retrieving containers' port
Binding a container to a specific IP address
Autogenerating the Docker host port
Port binding using the EXPOSE and -P options

Running Services in a Container

[117]

A brief overview of container networking
Networking is a critical infrastructure component of enterprise and cloud IT. Especially, as
computing becomes extremely distributed, networking becomes indispensable. Typically, a
Docker host comprises multiple Docker containers and hence the networking has become a
crucial component for realizing composite containerized applications. Docker containers
also need to interact and collaborate with local as well as remote ones to come out with
distributed applications. Precisely speaking, different and distributed containers need to be
publicly found, network-accessible, and composable to bring forth business-centric and
process-aware applications.

One of the key strengths of the Docker containerization paradigm is the ability to network
seamlessly without much effort from the user. The earlier version of Docker supported just
the bridge network; later, Docker acquired the SDN startup SocketPlane to add additional
networking capabilities. Since then, Docker's networking capability has grown leaps and
bounds and a separate set of subcommands, namely docker network connect, docker
network create, docker network disconnect, docker network inspect, docker
network ls, and docker network rm, were introduced to handle the nitty-gritty of the
Docker networking. By default, during installation, the Docker Engine creates three
networks for you, which you can list using the docker network ls subcommand, as
shown here:

As you can see in the preceding screenshot, during the Docker setup, the Docker Engine
creates the bridge, host, and none (null) networks. When Docker spins up a new
container, by default, it creates a network stack for the container and attaches to the default
bridge network. However, optionally, you could attach the container to the host or none
network or the user-defined network using the --net option of the docker run
subcommand. If you choose the host network, the container gets attached to the host
network stack and shares the host's IP addresses and ports. The none network mode creates
a network stack with just the Loopback (lo) interface. We can confirm this using the
docker run --rm --net=none busybox ip addr command, as shown here:

Running Services in a Container

[118]

Evidently, as you can see in the preceding screenshot, the container has got just a Loopback
interface. Since this container has got just a Loopback interface, the container cannot
communicate with other containers or the external world.

The bridge network is the default network interface that Docker Engine assigns to a
container if the network is not configured using the --net option of the docker run
subcommand. To have a better understanding of the bridge network, let's begin by
inspecting it using the docker network inspect subcommand, as shown here:

Running Services in a Container

[119]

Here, in the preceding screenshot, we have highlighted three paramount insights. You can
find the relevant description of what happens during the Docker installation process:

docker0: Docker creates an Ethernet bridge interface inside the Linux kernel
with the docker0 name on the Docker host. This interface is used as a bridge to
pass the Ethernet frames between containers and also between containers and an
external network.
Subnet: Docker also selects a private IP subnet from the address range of
172.17.0.0 to 172.17.255.255 and keeps it revered for its containers. In the
preceding screenshot, Docker has selected the 172.17.0.0/16 subnet for the
containers.
Gateway: The docker0 interface is the gateway for the bridge network and
Docker, from the IP subnet range selected earlier, assigns an IP address to
docker0. Here, in the preceding example, 172.17.0.1 is assigned to the
gateway.

We can cross-check the gateway address by listing the docker0 interface using the ip
addr show Linux command:

$ ip addr show docker0

The third line of the output shows the assigned IP address and its network prefix:

inet 172.17.0.1/16 scope global docker0

Apparently, from the preceding text, 172.17.0.1 is the IP address assigned to docker0,
the Ethernet bridge interface, which is also listed as the gateway address in the output of
the docker network inspect bridge command.

Now that we have a clear understanding of the bridge creation and the subnet/gateway
address selection process, let's explore the container networking in the bridge mode a bit
more in detail. In the bridge network mode, the Docker Engine creates a network stack
with a Loopback (lo) interface and an Ethernet (eth0) interface during the launch of the
container. We can quickly examine this by running the docker run --rm busybox ip
addr command:

Running Services in a Container

[120]

Evidently, the preceding output of the ip addr command shows that the Docker Engine
has created a network stack for the container with two network interfaces, which are as
follows:

The first interface is the lo (Loopback) interface, for which the Docker Engine
assigned the 127.0.0.1 Loopback address. The Loopback interface is used for
local communication within a container.

The second interface is an eth0 (Ethernet) interface, for which the Docker Engine
assigned the 172.17.0.3 IP address. Obviously, this address also falls within the
same IP address range of the docker0 Ethernet bridge interface. Besides, the
address assigned to the eth0 interface is used for intra-container communication
and host-to-container communication.

The ip addr and/or ifconfig commands are not supported by all
Docker images, including ubuntu:14.04 and ubuntu:16.04. The
docker inspect subcommand is the reliable way to find the IP address
of the container.

Running Services in a Container

[121]

Earlier, we mentioned that docker0, the Ethernet bridge interface, acts as a conduit to pass
the Ethernet frames between containers and also between containers and the external
world. However, we have not yet clarified how the containers connect with the docker0
bridge. The following diagram unravels some of the mystery around this connection:

As depicted here, the container's eth0 interface is connected to the docker0 bridge using
veth. The eth0 and veth interfaces belong to a special type of Linux network interface
called a Virtual Ethernet (veth) Interface. The veth interface always comes in a pair, and
they are like a water pipe wherein the data send from one veth interface will come out of
the other interface and vice versa. The Docker Engine assigns one of the veth interfaces to
the container with the eth0 name and assigns the container IP address to that interface. The
other veth interface of the pair is bound to the docker0 bridge interface. This ensures the
seamless flow of data between the Docker host and the containers.

Docker assigns private IP addresses to the container, which is not reachable from outside of
the Docker host. However, the container IP address comes in handy for debugging within
the Docker host. As we noted earlier, many Docker images do not support the ip addr or
ifconfig commands, besides we may not directly have access to the container prompt to
run any of these commands. Fortunately, Docker provides a docker inspect
subcommand, which is as handy as a Swiss Army knife, to dive deep into the low-level
details of the Docker container or image. The docker inspect subcommand reports quite
a lot of details including the IP address and the gateway address. For the practical purpose,
here you can either select a running container or temporarily launch a container, as follows:

$ sudo docker run -itd ubuntu:16.04

Running Services in a Container

[122]

Here, let's assume the container ID is 4b0b567b6019 and run the docker inspect
subcommand, as shown here:

$ sudo docker inspect 4b0b567b6019

This command generates quite a lot of information about the container. Here, we show
some excerpts of the container's network configuration from the output of the docker
inspect subcommand:

"Networks": {
 "bridge": {
 "IPAMConfig": null,
 "Links": null,
 "Aliases": null,
 "NetworkID": "ID removed for readability",
 "EndpointID": "ID removed for readability",
 "Gateway": "172.17.0.1",
 "IPAddress": "172.17.0.3",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "02:42:ac:11:00:03"
 }
}

Here are the details of some of the important fields in the network configuration:

Gateway: This is the gateway address of the container, which is the address of the
bridge interface as well
IPAddress: This is the IP address assigned to the container
IPPrefixLen: This is the IP prefix length, another way of representing the
subnet mask

Without doubt, the docker inspect subcommand is quite convenient to find the minute
details of a container or an image. However, it's a tiresome job to go through the
intimidating details and to find the right information that we are keenly looking for.
Perhaps, you can narrow it down to the right information, using the grep command.
Alternatively, even better, the docker inspect subcommand helps you pick the right field
from the JSON array using the --format option of the docker inspect subcommand.

Running Services in a Container

[123]

Notably, in the following example, we use the --format option of the docker inspect
subcommand to retrieve just the IP address of the container. The IP address is accessible
through the .NetworkSettings.IPAddress field of the JSON array:

$ sudo docker inspect \
 --format='{{.NetworkSettings.IPAddress}}' 4b0b567b6019
172.17.0.3

In addition to the none, host, and bridge networking modes, Docker also supports the
overlay, macvlan, and ipvlan network modes.

Envisaging container as a service
We laid a good foundation of the fundamentals of the Docker technology. In this section,
we are going to focus on crafting an image with the HTTP service, launch the HTTP service
inside the container using the crafted image, and then, demonstrate the connectivity to the
HTTP service running inside the container.

Building an HTTP server image
In this section, we are going to craft a Docker image in order to install Apache2 on top of the
Ubuntu 16.04 base image, and configure an Apache HTTP server to run as an executable,
using the ENTRYPOINT instruction.

In Chapter 3, Building Images, we illustrated the concept of Dockerfile to craft an
Apache2 image on top of the Ubuntu 16.04 base image. Here, in this example, we are going
to extend this Dockerfile by setting the Apache log path and setting Apache2 as the
default execution application, using the ENTRYPOINT instruction. The following is a detailed
explanation of the content of Dockerfile.

We are going to build an image using ubuntu:16.04 as the base image, using the FROM
instruction, as shown in the Dockerfile snippet:

###
Dockerfile to build an apache2 image
###
Base image is Ubuntu
FROM ubuntu:16.04

Running Services in a Container

[124]

Set the author's detail using the MAINTAINER instruction:

Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>

Using one RUN instruction, we will synchronize the APT repository source list, install the
apache2 package, and then clean the retrieved files:

Install apache2 package
RUN apt-get update && \
 apt-get install -y apache2 && \
 apt-get clean

Set the Apache log directory path using the ENV instruction:

Set the log directory PATH
ENV APACHE_LOG_DIR /var/log/apache2

Now, the final instruction is to launch the apache2 server using the ENTRYPOINT
instruction:

Launch apache2 server in the foreground
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

In the preceding line, you might be surprised to see the FOREGROUND argument. This is one
of the key differences between the traditional and the container paradigm. In the traditional
paradigm, the server applications are usually launched in the background either as a service
or a daemon because the host system is a general-purpose system. However, in the
container paradigm, it is imperative to launch an application in the foreground because the
images are crafted for a sole purpose.

Having prescribed the image building instruction in the Dockerfile, let's now move to the
next logical step of building the image using the docker build subcommand by naming
the image as apache2, as shown here:

$ sudo docker build -t apache2 .

Let's now do a quick verification of the images using the docker images subcommand:

$ sudo docker images

Running Services in a Container

[125]

As we have seen in the previous chapters, the docker images command displays the
details of all the images in the Docker host. However, in order to illustrate precisely the
images created using the docker build subcommand, we highlight the details of
apache2:latest (the target image) and ubuntu:16.04 (the base image) from the
complete image list, as shown in the following output snippet:

 apache2 latest 1b34e47c273d About a
minute ago 265.5 MB
ubuntu 16.04 f753707788c5 3 weeks ago
127.2 MB

Having built the HTTP server image, let's now move on to the next session to learn how to
run the HTTP service.

Running the HTTP server image as a service
In this section, we are going to launch a container using the Apache HTTP server image, we
crafted in the previous section. Here, we launch the container in the detached mode (similar
to the UNIX daemon process) using the -d option of the docker run subcommand:

$ sudo docker run -d apache2
9d4d3566e55c0b8829086e9be2040751017989a47b5411c9c4f170ab865afcef

Having launched the container, let's run the docker logs subcommand to see whether our
Docker container generates any output on its stdin (standard input) or stderr (standard
error):

$ sudo docker logs \
9d4d3566e55c0b8829086e9be2040751017989a47b5411c9c4f170ab865afcef

As we have not fully configured the Apache HTTP server, you will find the following
warning, as the output of the docker logs subcommand:

AH00558: apache2: Could not reliably determine the server's fully qualified
domain name, using 172.17.0.13. Set the 'ServerName' directive globally to
suppress this message

From the preceding warning message, it is quite evident that the IP address assigned to this
container is 172.17.0.13.

Running Services in a Container

[126]

Connecting to the HTTP service
In the preceding section, indecently, from the warning message, we find out that the IP
address of the container is 172.17.0.13. On a fully configured HTTP server container, no
such warning is available, so let's still run the docker inspect subcommand to retrieve
the IP address using the container ID:

$ sudo docker inspect \
--format='{{.NetworkSettings.IPAddress}}'
9d4d3566e55c0b8829086e9be2040751017989a47b5411c9c4f170ab865afcef
172.17.0.13

Having found the IP address of the container as 172.17.0.13, let's quickly run a web
request on this IP address from the shell prompt of the Docker host, using the wget
command. Here, we choose to run the wget command with -qO - in order to run in the
quiet mode and also display the retrieved HTML file on the screen:

$ wget -qO - 172.17.0.13

Here, we are showcasing just the first five lines of the retrieved HTML file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <!--
 Modified from the Debian original for Ubuntu
 Last updated: 2014-03-19

Awesome, isn't it? We got our first service running in a container, and we are able to reach
out to our service from our Docker host.

Furthermore, on a plain vanilla Docker installation, the service offered by one container is
accessible by any other container within the Docker host. You can go ahead, launch a new
Ubuntu container in the interactive mode, install the wget package using apt-get, and run
the same wget -qO - 172.17.0.13 command, as we did in the Docker host. Of course,
you will see the same output.

Running Services in a Container

[127]

Exposing container services
So far, we successfully launched an HTTP service and accessed the service from the Docker
host as well as another container within the same Docker host. Furthermore, as
demonstrated in the Building images from containers section of Chapter 2, Handling Docker
Containers, the container is able to successfully install the wget package by making a
connection to the publicly available APT repository over the Internet. Nonetheless, the
outside world cannot access the service offered by a container by default. At the outset, this
might seem like a limitation in the Docker technology. However, the fact is, the containers
are isolated from the outside world by design.

Docker achieves network isolation for the containers by the IP address assignment criteria,
as enumerated here:

Assigning a private IP address to the container, which is not reachable from an
external network
Assigning an IP address to the container outside the host's IP network

Consequently, the Docker container is not reachable even from the systems that are
connected to the same IP network as the Docker host. This assignment scheme also provides
protection from an IP address conflict that might otherwise arise.

Now, you might wonder how to make the services run inside a container that is accessible
to the outside world, in other words, exposing container services. Well, Docker bridges this
connectivity gap in a classy manner by leveraging the Linux iptables functionality under
the hood.

At the frontend, Docker provides two different building blocks for bridging this
connectivity gap for its users. One of the building blocks is to bind the container port using
the -p (publish a container's port to the host interface) option of the docker run
subcommand. Another alternative is to use the combination of the EXPOSE instruction of
Dockerfile and the -P (publish all exposed ports to the host interfaces) option of the
docker run subcommand.

Running Services in a Container

[128]

Publishing a container's port – the -p option
Docker enables you to publish a service offered inside a container by binding the container's
port to the host interface. The -p option of the docker run subcommand enables you to
bind a container port to a user-specified or autogenerated port of the Docker host. Thus, any
communication destined for the IP address and the port of the Docker host will be
forwarded to the port of the container. The -p option, actually, supports the following four
formats of arguments:

<hostPort>:<containerPort>

<containerPort>

<ip>:<hostPort>:<containerPort>

<ip>::<containerPort>

Here, <ip> is the IP address of the Docker host, <hostPort> is the Docker host port
number, and <containerPort> is the port number of the container. Here, in this section,
we present you with the -p <hostPort>:<containerPort> format and introduce other
formats in the succeeding sections.

In order to understand the port binding process better, let's reuse the apache2 HTTP server
image that we crafted previously and spin up a container using a -p option of the docker
run subcommand. The 80 port is the published port of the HTTP service, and as the default
behavior, our apache2 HTTP server is also available on port 80. Here, in order to
demonstrate this capability, we are going to bind port 80 of the container to port 80 of the
Docker host, using the -p <hostPort>:<containerPort> option of the docker run
subcommand, as shown in the following command:

$ sudo docker run -d -p 80:80 apache2
baddba8afa98725ec85ad953557cd0614b4d0254f45436f9cb440f3f9eeae134

Now that we have successfully launched the container, we can connect to our HTTP server
using any web browser from any external system (provided it has a network connectivity)
to reach our Docker host.

Running Services in a Container

[129]

So far, we have not added any web pages to our apache2 HTTP server image. Hence, when
we connect from a web browser, we will get the following screen, which is nothing but the
default page that comes along with the Ubuntu Apache2 package:

NAT for containers
In the previous section, we saw how a -p 80:80 option did the magic, didn't we? Well, in
reality, under the hood, the Docker Engine achieves this seamless connectivity by
automatically configuring the Network Address Translation (NAT) rule in the Linux
iptables configuration files.

To illustrate the automatic configuration of the NAT rule in Linux iptables, let's query the
Docker hosts iptables for its NAT entries, as follows:

$ sudo iptables -t nat -L -n

The ensuing text is an excerpt from the iptables NAT entry, which is automatically added
by the Docker Engine:

Chain DOCKER (2 references)
target prot opt source destination
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:80
to:172.17.0.14:80

From the preceding excerpt, it is quite evident that the Docker Engine has effectively added
a DNAT rule. The following are the details of the DNAT rule:

The tcp keyword signifies that this DNAT rule applies only to the TCP transport
protocol.
The first 0.0.0.0/0 address is a meta IP address of the source address. This
address indicates that the connection can originate from any IP address.

Running Services in a Container

[130]

The second 0.0.0.0/0 address is a meta IP address of the destination address on
the Docker host. This address indicates that the connection can be made to any
valid IP address in the Docker host.
Finally, dpt:80 to:172.17.0.14:80 is the forwarding instruction used to
forward any TCP activity on port 80 of the Docker host to be forwarded to
the 172.17.0.17 IP address, the IP address of our container and port 80.

Therefore, any TCP packet that the Docker host receives on port 80 will be
forwarded to port 80 of the container.

Retrieving the container port
The Docker Engine provides at least three different options to retrieve the container's port
binding details. Here, let's first explore the options, and then, move on to dissect the
retrieved information. The options are as follows:

The docker ps subcommand always displays the port binding details of a
container, as shown here:

 $ sudo docker ps
 CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS
 NAMES
 baddba8afa98 apache2:latest
 "/usr/sbin/apache2ct
 26 seconds ago Up 25 seconds
 0.0.0.0:80->80/tcp
 furious_carson

The docker inspect subcommand is another alternative; however, you have to
skim through quite a lot of details. Run the following command:

 $ sudo docker inspect baddba8afa98

Running Services in a Container

[131]

The docker inspect subcommand displays the port binding related
information in three JSON objects, as shown here:

The ExposedPorts object enumerates all ports that are exposed
through the EXPOSE instruction in Dockerfile, as well as the
container ports that are mapped using the -p option in the docker
run subcommand. Since we didn't add the EXPOSE instruction in our
Dockerfile, what we have is just the container port that was mapped
using -p 80:80 as an argument to the docker run subcommand:

 "ExposedPorts": {
 "80/tcp": {}
 },

The PortBindings object is part of the HostConfig object, and this
object lists out all the port binding done through the -p option in the
docker run subcommand. This object will never list the ports exposed
through the EXPOSE instruction in the Dockerfile:

 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "",
 "HostPort": "80"
 }
]
 },

The Ports object of the NetworkSettings object has the same level of
details, as the preceding PortBindings object. However, this object
encompasses all ports that are exposed through the EXPOSE instruction
in Dockerfile, as well as the container ports that are mapped using
the -p option in the docker run subcommand:

 "NetworkSettings": {
 "Bridge": "",
 "SandboxID":"ID removed for readability",
 "HairpinMode": false,
 "LinkLocalIPv6Address": "",
 "LinkLocalIPv6PrefixLen": 0,
 "Ports": {
 "80/tcp": [

Running Services in a Container

[132]

 {
 "HostIp": "0.0.0.0",
 "HostPort": "80"
 }
]
 },

Of course, the specific port field can be filtered using the --format option of the docker
inspect subcommand.

The docker port subcommand enables you to retrieve the port binding on the Docker
host by specifying the container's port number:

$ sudo docker port baddba8afa98 80
0.0.0.0:80

Evidently, in all the preceding output excerpts, the information that stands out is
the 0.0.0.0 IP address and the 80 port number. The 0.0.0.0 IP address is a meta address,
which represents all the IP addresses configured on the Docker host. In effect,
the 80 container's port is bound to all the valid IP addresses on the Docker host. Therefore,
the HTTP service is accessible through any of the valid IP addresses configured on the
Docker host.

Binding a container to a specific IP address
Until now, with the method that you learned, the containers always get bound to all the IP
addresses configured on the Docker host. However, you may want to offer different
services on different IP addresses. In other words, a specific IP address and port would be
configured to offer a particular service. We can achieve this in Docker using the -p
<ip>:<hostPort>:<containerPort> option of the docker run subcommand, as shown
in the following example:

$ sudo docker run -d -p 198.51.100.73:80:80 apache2
92f107537bebd48e8917ea4f4788bf3f57064c8c996fc23ea0fd8ea49b4f3335

Here, the IP address must be a valid IP address on the Docker host. If the specified IP
address is not a valid IP address on the Docker host, the container launch will fail with an
error message, as follows:

2014/11/09 10:22:10 Error response from daemon: Cannot start container
99db8d30b284c0a0826d68044c42c370875d2c3cad0b87001b858ba78e9de53b:
Error starting user land proxy: listen tcp 10.110.73.34:49153: bind:cannot
assign requested address

Running Services in a Container

[133]

Now, let's quickly review the port mapping as well the NAT entry for the preceding
example:

The following text is an excerpt from the output of the docker ps subcommand
that shows the details of this container:

 92f107537beb apache2:latest "/usr/sbin/apache2ct
 About a minute ago Up About a minute 198.51.100.73:80->80/tcp
 boring_ptolemy

The following text is an excerpt from the output of the iptables -n nat -L -n
command that shows the DNAT entry created for this container:

 DNAT tcp -- 0.0.0.0/0 198.51.100.73 tcp dpt:80
 to:172.17.0.15:80

After reviewing both the output of the docker run subcommand and the DNAT entry of
iptables, you will realize how elegantly the Docker Engine has configured the service
offered by the container on the 198.51.100.73 IP address and 80 port of the Docker host.

Autogenerating the Docker host port
The Docker containers are innately lightweight and due to their lightweight nature, you can
run multiple containers with the same or different service on a single Docker host.
Particularly, autoscaling of the same service across several containers based on the demand
is the need of the IT infrastructure today. Here, in this section, you will be informed about
the challenge in spinning up multiple containers with the same service and also the
Docker's way of addressing this challenge.

Earlier in this chapter, we launched a container using Apache2 HTTP server by binding it to
port 80 of the Docker host. Now, if we attempt to launch one more container with the same
port 80 binding, the container would fail to start with an error message, as you can see in
the following example:

$ sudo docker run -d -p 80:80 apache2
6f01f485ab3ce81d45dc6369316659aed17eb341e9ad0229f66060a8ba4a2d0e
2014/11/03 23:28:07 Error response from daemon: Cannot start container
6f01f485ab3ce81d45dc6369316659aed17eb341e9ad0229f66060a8ba4a2d0e:
Bind for 0.0.0.0:80 failed: port is already allocated

Running Services in a Container

[134]

Obviously, in the preceding example, the container failed to start because the previous
container is already mapped to 0.0.0.0 (all the IP addresses of the Docker host) and port
80. In the TCP/IP communication model, the combination of the IP address, port, and the
transport protocols (TCP, UDP, and so on) has to be unique.

We could have overcome this issue by manually choosing the Docker host port number (for
instance, -p 81:80 or -p 8081:80). Though this is an excellent solution, it does not scale
well for autoscaling scenarios. Instead, if we give the control to Docker, it would
autogenerate the port number on the Docker host. This port number generation is achieved
by underspecifying the Docker host port number, using the -p <containerPort> option
of the docker run subcommand, as shown in the following example:

$ sudo docker run -d -p 80 apache2
ea3e0d1b18cff40ffcddd2bf077647dc94bceffad967b86c1a343bd33187d7a8

Having successfully started the new container with the autogenerated port, let's review the
port mapping as well the NAT entry for the preceding example:

The following text is an excerpt from the output of the docker ps subcommand
that shows the details of this container:

 ea3e0d1b18cf apache2:latest "/usr/sbin/apache2ct
 5 minutes ago Up 5 minutes 0.0.0.0:49158->80/tcp
 nostalgic_morse

The following text is an excerpt from the output of the iptables -n nat -L -n
command that shows the DNAT entry created for this container:

 DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49158
 to:172.17.0.18:80

After reviewing both the output of the docker run subcommand and the DNAT entry of
iptables, what stands out is the 49158 port number. The 49158 port number is niftily
autogenerated by the Docker Engine on the Docker host, with the help of the underlying
operating system. Besides, the 0.0.0.0 meta IP address implies that the service offered by
the container is accessible from outside, through any of the valid IP addresses configured
on the Docker host.

Running Services in a Container

[135]

You may have a use case where you want to autogenerate the port number. However, if
you still want to restrict the service to a particular IP address of the Docker host, you can
use the -p <IP>::<containerPort> option of the docker run subcommand, as shown
in the following example:

$ sudo docker run -d -p 198.51.100.73::80 apache2
6b5de258b3b82da0290f29946436d7ae307c8b72f22239956e453356532ec2a7

In the preceding two scenarios, the Docker Engine autogenerated the port number on the
Docker host and exposed it to the outside world. The general norm of network
communication is to expose any service through a predefined port number so that anybody
knows the IP address, and the port number can easily access the offered service. Whereas,
here the port numbers are autogenerated and as a result, the outside world cannot directly
reach the offered service. So, the primary purpose of this method of container creation is to
achieve autoscaling, and the container created in this fashion would be interfaced with a
proxy or load balance service on a predefined port.

Port binding using EXPOSE and -P option
So far, we have discussed the four distinct methods to publish a service running inside a
container to the outside world. In all these four methods, the port binding decision is taken
during the container launch, and the image has no information about the ports on which the
service is being offered. It has worked well so far because the image is being built by us, and
we are pretty much aware of the port in which the service is being offered.

However, in the case of third-party images, the port usage inside a container has to be
published unambiguously. Besides, if we build images for third-party consumption or even
for our own use, it is a good practice to explicitly state the ports in which the container
offers its service. Perhaps, the image builders could ship a README document along with
the image. However, it is even better to embed the port details in the image itself so that
you can easily find the port details from the image both manually as well as through
automated scripts.

The Docker technology allows us to embed the port information using the EXPOSE
instruction in the Dockerfile, which we introduced in Chapter 3, Building Images. Here,
let's edit the Dockerfile we used to build the apache2 HTTP server image earlier in this
chapter, and add an EXPOSE instruction, as shown in the following code. The default port
for the HTTP service is port 80, hence port 80 is exposed:

###
Dockerfile to build an apache2 image
###

Running Services in a Container

[136]

Base image is Ubuntu
FROM ubuntu:16.04
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Install apache2 package
RUN apt-get update &&
 apt-get install -y apache2 &&
 apt-get clean
Set the log directory PATH
ENV APACHE_LOG_DIR /var/log/apache2
Expose port 80
EXPOSE 80
Launch apache2 server in the foreground
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

Now that we have added the EXPOSE instruction to our Dockerfile, let's move to the next
step of building the image using the docker build command. Here, let's reuse
the apache2 image name, as shown here:

$ sudo docker build -t apache2 .

Having successfully built the image, let's inspect the image to verify the effects of the
EXPOSE instruction to the image. As we learned earlier, we can resort to the docker
inspect subcommand, as shown here:

$ sudo docker inspect apache2

On a close review of the output generated by the preceding command, you will realize that
Docker stores the exposed port information in the ExposedPorts field of the Config
object. The following is an excerpt to show how the exposed port information is being
displayed:

"ExposedPorts": {
 "80/tcp": {}
},

Alternatively, you can apply the --format option to the docker inspect subcommand in
order to narrow down the output to a very specific information. In this case, the
ExposedPorts field of the Config object is shown in the following example:

$ sudo docker inspect --format='{{.Config.ExposedPorts}}' apache2
map[80/tcp:map[]]

Running Services in a Container

[137]

To resume our discussion on the EXPOSE instruction, we can now spin up containers using
an apache2 image, we just crafted. Yet, the EXPOSE instruction by itself cannot create a port
binding on the Docker host. In order to create a port binding for the port declared using the
EXPOSE instruction, the Docker Engine provides a -P option in the docker run
subcommand.

In the following example, a container is launched from the apache2 image, which was
rebuilt earlier. Here, the -d option is used to launch the container in the detached mode,
and the -P option is used to create the port binding on the Docker host for all the ports
declared, using the EXPOSE instruction in the Dockerfile:

$ sudo docker run -d -P apache2
fdb1c8d68226c384ab4f84882714fec206a73fd8c12ab57981fbd874e3fa9074

Now that we have started the new container with the image that was created using the
EXPOSE instruction, like the previous containers, let's review the port mapping as well the
NAT entry for the preceding example:

The following text is an excerpt from the output of the docker ps subcommand
that shows the details of this container:

 ea3e0d1b18cf apache2:latest "/usr/sbin/apache2ct
 5 minutes ago Up 5 minutes 0.0.0.0:49159->80/tcp
 nostalgic_morse

The following text is an excerpt from the output of the iptables -t nat -L -n
command that shows the DNAT entry created for this container:

 DNAT tcp -- 0.0.0.0/0 0.0.0.0/0
 tcp dpt:49159 to:172.17.0.19:80

The -P option of the docker run subcommand does not take any additional arguments,
such as an IP address or a port number; consequently, fine-tuning of the port binding is not
possible, such as the -p option of the docker run subcommand. You can always resort to
the -p option of the docker run subcommand if fine-tuning of port binding is critical to
you.

Running Services in a Container

[138]

Summary
Containers do not deliver anything substantial in an isolated or solo way. They need to be
systematically built and provided with a network interface along with a port number. These
lead to the standardized exposition of containers to the outside world, facilitating other
hosts or containers to find, bind, and leverage their unique capabilities on any network.
Thus, the network accessibility is paramount for containers to get noticed across and be
utilized in innumerable ways. This chapter was dedicated to showcase how containers are
being designed and deployed as a service, and how the aspect of container networking
comes in handy in precisely and profusely empowering the peculiar world of container
services as the days unfold. In the forthcoming chapters, we will deal and dwell at length
on the various capabilities of Docker containers in the software-intensive IT environments.

7
Sharing Data with Containers

"Do one thing at a time and do it well," has been one of the successful mantras in the
Information Technology (IT) sector for quite a long time now. This widely used tenet fits
nicely to build and expose Docker containers too, and it is being prescribed as one of the
best practices to avail the originally envisaged benefits of the Docker-inspired
containerization paradigm. This means that, we must inscribe a single application along
with its direct dependencies and libraries inside a Docker container in order to ensure the
container's independence, self-sufficiency, horizontal scalability, and maneuverability. Let's
see why containers are that important:

The temporal nature of containers: The container typically lives as long as the
application lives and vice versa. However, this has some negative implications
for the application data. Applications naturally go through a variety of changes in
order to accommodate both business as well as technical changes, even in their
production environments. There are other causes, such as application
malfunctions, version changes, and application maintenance, for software
applications to be consistently and constantly updated and upgraded. In the case
of a general-purpose computing model, even when an application dies for any
reason, the persistent data associated with this application can be preserved in
the filesystem. However, in the case of the container paradigm, the application
upgrades are usually performed by systematically crafting a new container with
the newer version of the application by simply discarding the old one. Similarly,
when an application malfunctions, a new container needs to be launched and the
old one has to be discarded. To sum it up, containers are typically temporal in
nature.

Sharing Data with Containers

[140]

The need for a business continuity: In the container landscape, the complete
execution environment, including its data files, is usually bundled and
encapsulated inside the container. For any reason, when a container gets
discarded, the application data files also perish along with the container.
However, in order to provide software applications without any interruption and
disruption of service, these application data files must be preserved outside the
container and passed on to the container on a need basis in order to ensure
business continuity. This means that the resiliency and reliability of containers
need to be guaranteed. Besides, some application data files, such as the log files,
needs to be collected and accessed outside the container for various posterior
analyses. The Docker technology addresses this file persistence issue very
innovatively through a new building block called data volume.

The Docker technology has three different ways of providing persistent storage:

The first and recommended approach is to use volumes that are created using
Docker's volume management.
The second method is to mount a directory from the Docker host to a specified
location inside the container.
The other alternative is to use a data-only container. The data-only container is a
specially crafted container that is used to share data with one or more containers.

In this chapter, we will cover the following topics:

Data volume
Sharing host data
Sharing data between containers
The avoidable common pitfalls

Data volume
Data volume is the fundamental building block of data sharing in the Docker environment.
Before getting into the details of data sharing, it is imperative to get a good understanding
of the data volume concept. Until now, all the files that we create in an image or a container
is part and parcel of the union filesystem. The container's union filesystem perishes along
with the container. In other words, when the container is removed, its filesystem is also
automatically removed. However, the enterprise-grade applications must persist data and
the container's filesystem will not render itself for such a requirement.

Sharing Data with Containers

[141]

The Docker ecosystem, however, elegantly addresses this issue with the data volume
concept. Data volume is essentially a part of the Docker host filesystem and it simply gets
mounted inside the container. Optionally, you can use other advanced filesystems such as
Flocker and GlusterFS as data volumes through pluggable volume drivers. Since data
volume is not a part of the container's filesystem, it has a life cycle independent of the
container.

A data volume can be inscribed in a Docker image using the VOLUME instruction of the
Dockerfile. Also, it can be prescribed during the launch of a container using the -v option
of the docker run subcommand. Here, in the following example, the implication of the
VOLUME instruction in the Dockerfile is illustrated in detail in the following steps:

Create a very simple Dockerfile with the instruction of the base image1.
(ubuntu:16.04) and the data volume (/MountPointDemo):

 FROM ubuntu:16.04
 VOLUME /MountPointDemo

Build the image with the mount-point-demo name using the docker build2.
subcommand:

 $ sudo docker build -t mount-point-demo .

Having built the image, let's quickly inspect the image for our data volume using3.
the docker inspect subcommand:

 $ sudo docker inspect mount-point-demo
 [
 {
 "Id": "sha256:<64 bit hex id>",
 "RepoTags": [
 "mount-point-demo:latest"
],
 ... TRUNCATED OUTPUT ...
 "Volumes": {
 "/MountPointDemo": {}
 },
 ... TRUNCATED OUTPUT ...

Evidently, in the preceding output, data volume is inscribed in the image itself.

Sharing Data with Containers

[142]

Now, let's launch an interactive container using the docker run subcommand4.
from the earlier crafted image, as shown in the following command:

 $ sudo docker run --rm -it mount-point-demo

From the container's prompt, let's check the presence of data volume using the ls
-ld command:

 root@8d22f73b5b46:/# ls -ld /MountPointDemo
 drwxr-xr-x 2 root root 4096 Nov 18 19:22
 /MountPointDemo

As mentioned earlier, data volume is part of the Docker host filesystem and it gets
mounted, as shown in the following command:

 root@8d22f73b5b46:/# mount | grep MountPointDemo
 /dev/xvda2 on /MountPointDemo type ext3
 (rw,noatime,nobarrier,errors=remount-ro,data=ordered)

In this section, we inspected the image to find out about the data volume5.
declaration in the image. Now that we have launched the container, let's inspect
the container's data volume using the docker inspect subcommand with the
container ID as its argument in a different Terminal. We created a few containers
previously and for this purpose, let's take the 8d22f73b5b46 container ID
directly from the container's prompt:

 $ sudo docker inspect -f
 '{{json .Mounts}}' 8d22f73b5b46
 [
 {
 "Propagation": "",
 "RW": true,
 "Mode": "",
 "Driver": "local",
 "Destination": "/MountPointDemo",
 "Source":
"/var/lib/docker/volumes/720e2a2478e70a7cb49ab7385b8be627d4b6ec52e6bb33063e
4144355d59592a/_data",
"Name": "720e2a2478e70a7cb49ab7385b8be627d4b6ec52e6bb33063e4144355d59592a"
 }
]

Sharing Data with Containers

[143]

Apparently, here, data volume is mapped to a directory in the Docker host, and the
directory is mounted in the read-write mode. This directory, also called as volume, is
created by the Docker Engine automatically during the launch of the container. Since
version 1.9 of Docker, the volumes are managed through a top-level volume management
command, which we will dive and dig further down into tell all in the next section.

So far, we have seen the implication of the VOLUME instruction in the Dockerfile, and how
Docker manages data volume. Like the VOLUME instruction of the Dockerfile, we can use
the -v <container mount point path> option of the docker run subcommand, as
shown in the following command:

$ sudo docker run -v /MountPointDemo -it ubuntu:16.04

Having launched the container, we encourage you to try the ls -ld /MountPointDemo
and mount commands in the newly launched container, and then also, inspect the container,
as shown in the preceding step 5.

In both the scenarios described here, the Docker Engine automatically creates the volume
under the /var/lib/docker/volumes/ directory and mounts it to the container. When a
container is removed using the docker rm subcommand, the Docker Engine does not
remove the volume that was automatically created during the launch of the container. This
behavior is innately designed to preserve the state of the container's application that was
stored in the volume filesystem. If you want to remove the volume that was automatically
created by the Docker Engine, you can do so while removing the container by providing a -
v option to the docker rm subcommand, on an already stopped container:

$ sudo docker rm -v 8d22f73b5b46

If the container is still running, then you can remove the container as well as the
autogenerated directory by adding a -f option to the previous command:

$ sudo docker rm -fv 8d22f73b5b46

We have taken you through the techniques and tips to autogenerate a directory in the
Docker host and mount it to the data volume in the container. However, with the -v option
of the docker run subcommand, a user-defined directory can be mounted to the data
volume. In such cases, the Docker Engine will not autogenerate any directory.

The system generation of a directory has a caveat of directory leak. In
other words, if you forget to delete the system-generated directories, you
may face some unwanted issues. For further information, read the
Avoiding common pitfalls section in this chapter.

Sharing Data with Containers

[144]

The volume management command
Docker has introduced a top-level volume management command from version 1.9 in order
to manage the persistent filesystem effectively. The volume management command is
capable of managing data volumes that are part of the Docker host. In addition to that, it
also helps us to extend the Docker persistent capability using pluggable volume drivers
(Flocker, GlusterFS, and so on). You can find the list of supported plugins at
https://docs.docker.com/engine/extend/legacy_plugins/.

The docker volume command supports four subcommands as listed here:

create: This creates a new volume
inspect: This displays detailed information about one or more volumes
ls: This lists the volumes in the Docker host
rm: This removes a volume

Let's quickly explore the volume management command through a few examples. You can
create a volume using the docker volume create subcommand, as shown here:

$ sudo docker volume create
50957995c7304e7d398429585d36213bb87781c53550b72a6a27c755c7a99639

The preceding command will create a volume by autogenerating a 64-hex digit string as the
volume name. However, it is more effective to name the volume with a meaningful name
for easy identification. You can name a volume using the --name option of the docker
volume create subcommand:

$ sudo docker volume create --name example
example

Now, that we have created two volumes with and without a volume name, let's use the
docker volume ls subcommand to display them:

$ sudo docker volume ls
DRIVER VOLUME NAME
local
50957995c7304e7d398429585d36213bb87781c53550b72a6a27c755c7a99639
local example

Sharing Data with Containers

[145]

Having listed out the volumes, let's run the docker volume inspect subcommand into
the details of the volumes we have created earlier:

$ sudo docker volume inspect example
[
 {
 "Name": "example",
 "Driver": "local",
 "Mountpoint":
 "/var/lib/docker/volumes/example/_data",
 "Labels": {},
 "Scope": "local"
 }
]

The docker volume rm subcommand enables you to remove the volumes you don't need
anymore:

$ sudo docker volume rm example
example

Now that we are familiar with Docker volume management, let's dive deep into data
sharing in the ensuing sections.

Sharing host data
Earlier, we described the steps to create a data volume in a Docker image using the VOLUME
instruction in the Dockerfile. However, Docker does not provide any mechanism to
mount the host directory or file during the build time in order to ensure the Docker images
to be portable. The only provision Docker provides is to mount the host directory or file to a
container's data volume during the container's launch. Docker exposes the host directory or
file mounting facility through the -v option of the docker run subcommand. The -v
option has five different formats, enumerated as follows:

-v <container mount path>

-v <host path>:<container mount path>

-v <host path>:<container mount path>:<read write mode>

-v <volume name>:<container mount path>

-v <volume name>:<container mount path>:<read write mode>

Sharing Data with Containers

[146]

The <host path> format is an absolute path in the Docker host, <container mount
path> is an absolute path in the container filesystem, <volume name> is the name of the
volume created using the docker volume create subcommand, and <read write
mode> can be either the read-only (ro) or read-write (rw) mode. The first -v <container
mount path> format has already been explained in the Data volume section in this chapter,
as a method to create a mount point during the launch of the container launch. The second
and third formats enable us to mount a file or directory from the Docker host to the
container mount point. The fourth and fifth formats allow us to mount volumes created
using the docker volume create subcommand.

We would like to dig deeper to gain a better understanding of the host's data sharing
through a couple of examples. In the first example, we will demonstrate how to share a
directory between the Docker host and the container, and in the second example, we will
demonstrate file sharing.

Here, in the first example, we mount a directory from the Docker host to a container,
perform a few basic file operations on the container, and verify these operations from the
Docker host, as detailed in the following steps:

First, let's launch an interactive container with the -v option of the docker run1.
subcommand to mount /tmp/hostdir of the Docker host directory to
/MountPoint of the container:

 $ sudo docker run -v /tmp/hostdir:/MountPoint \
 -it ubuntu:16.04

If /tmp/hostdir is not found on the Docker host, the Docker Engine will
create the directory per se. However, the problem is that the system-
generated directory cannot be deleted using the -v option of the docker
rm subcommand.

Having successfully launched the container, we can check the presence of2.
/MountPoint using the ls command:

 root@4a018d99c133:/# ls -ld /MountPoint
 drwxr-xr-x 2 root root 4096 Nov 23 18:28
 /MountPoint

Now, we can proceed to check the mount details using the mount command:3.

 root@4a018d99c133:/# mount | grep MountPoint
 /dev/xvda2 on /MountPoint type ext3
 (rw,noatime,nobarrier,errors=
 remount-ro,data=ordered)

Sharing Data with Containers

[147]

Here, we are going to validate /MountPoint, change to the /MountPoint4.
directory using the cd command, create a few files using the touch command,
and list the files using the ls command, as shown in the following script:

 root@4a018d99c133:/# cd /MountPoint/
 root@4a018d99c133:/MountPoint# touch {a,b,c}
 root@4a018d99c133:/MountPoint# ls -l
 total 0
 -rw-r--r-- 1 root root 0 Nov 23 18:39 a
 -rw-r--r-- 1 root root 0 Nov 23 18:39 b
 -rw-r--r-- 1 root root 0 Nov 23 18:39 c

It might be worth the effort to verify the files in the /tmp/hostdir Docker host5.
directory using the ls command on a new Terminal, as our container is running
in an interactive mode on the existing Terminal:

 $ sudo ls -l /tmp/hostdir/
 total 0
 -rw-r--r-- 1 root root 0 Nov 23 12:39 a
 -rw-r--r-- 1 root root 0 Nov 23 12:39 b
 -rw-r--r-- 1 root root 0 Nov 23 12:39 c

Here, we can see the same set of files, as we saw in step 4. However, you might
have noticed the difference in the timestamp of the files. This time difference is
due to the time zone difference between the Docker host and the container.

Finally, let's run the docker inspect subcommand with the 4a018d99c1336.
container ID as an argument to see whether the directory mapping is set up
between the Docker host and the container mount point, as shown in the
following command:

 $ sudo docker inspect \
 --format='{{json .Mounts}}' 4a018d99c133
 [{"Source":"/tmp/hostdir",
 "Destination":"/MountPoint","Mode":"",
 "RW":true,"Propagation":"rprivate"}]

Apparently, in the preceding output of the docker inspect subcommand, the
/tmp/hostdir directory of the Docker host is mounted on the /MountPoint
mount point of the container.

Sharing Data with Containers

[148]

For the second example, we will mount a file from the Docker host to a container, update
the file from the container, and verify those operations from the Docker host, as detailed in
the following steps:

In order to mount a file from the Docker host to the container, the file must1.
preexist in the Docker host. Otherwise, the Docker Engine will create a new
directory with the specified name and mount it as a directory. We can start by
creating a file on the Docker host using the touch command:

 $ touch /tmp/hostfile.txt

Launch an interactive container with the -v option of the docker run2.
subcommand to mount the /tmp/hostfile.txt Docker host file to the
container as /tmp/mntfile.txt:

 $ sudo docker run -v /tmp/hostfile.txt:/mntfile.txt \
 -it ubuntu:16.04

Having successfully launched the container, now let's check the presence of3.
/mntfile.txt using the ls command:

 root@d23a15527eeb:/# ls -l /mntfile.txt
 -rw-rw-r-- 1 1000 1000 0 Nov 23 19:33 /mntfile.txt

Then, proceed to check the mount details using the mount command:4.

 root@d23a15527eeb:/# mount | grep mntfile
 /dev/xvda2 on /mntfile.txt type ext3
 (rw,noatime,nobarrier,errors=remount-ro,data=ordered)

Then, update some text to /mntfile.txt using the echo command:5.

 root@d23a15527eeb:/# echo "Writing from Container"
 > mntfile.txt

Meanwhile, switch to a different Terminal in the Docker host, and print the6.
/tmp/hostfile.txt Docker host file using the cat command:

 $ cat /tmp/hostfile.txt
 Writing from Container

Sharing Data with Containers

[149]

Finally, run the docker inspect subcommand with the d23a15527eeb7.
container ID as it's argument to see the file mapping between the Docker host and
the container mount point:

 $ sudo docker inspect \
 --format='{{json .Mounts}}' d23a15527eeb
 [{"Source":"/tmp/hostfile.txt",
 "Destination":"/mntfile.txt",
 "Mode":"","RW":true,"Propagation":"rprivate"}]

From the preceding output, it is evident that the /tmp/hostfile.txt file from
the Docker host is mounted as /mntfile.txt inside the container.

For the last example, we will create a Docker volume and mount a named data volume to a
container. In this example, we are not going to run the verification steps as we did in the
previous two examples. However, you are encouraged to run the verification steps we laid
out in the first example.

Create a named data volume using the docker volume create subcommand,1.
as shown here:

 $ docker volume create --name namedvol

Now, launch an interactive container with the -v option of the docker run2.
subcommand to mount namedvol a named data value to /MountPoint of the
container:

 $ sudo docker run -v namedvol:/MountPoint \
 -it ubuntu:16.04

During the launch of the container, Docker Engine creates namedvol if it
is not created already.

Having successfully launched the container, you can repeat the verification steps3.
2 to 6 of the first example and you will find the same output pattern in this
example as well.

Sharing Data with Containers

[150]

The practicality of host data sharing
In the previous chapter, we launched an HTTP service in a Docker container. However, if
you remember correctly, the log file for the HTTP service is still inside the container, and it
cannot be accessed directly from the Docker host. Here, in this section, we elucidate the
procedure of accessing the log files from the Docker host in a step-by-step manner:

Let's begin with launching an Apache2 HTTP service container by mounting the1.
/var/log/myhttpd directory of the Docker host to the /var/log/apache2
directory of the container, using the -v option of the docker run subcommand.
In this example, we are leveraging the apache2 image, which we had built in the
previous chapter, by invoking the following command:

 $ sudo docker run -d -p 80:80 \
 -v /var/log/myhttpd:/var/log/apache2 apache2
9c2f0c0b126f21887efaa35a1432ba7092b69e0c6d523ffd50684e27eeab37ac

If you recall the Dockerfile in Chapter 6, Running Services in a Container, the
APACHE_LOG_DIR environment variable is set to the /var/log/apache2
directory, using the ENV instruction. This will make the Apache2 HTTP service to
route all log messages to the /var/log/apache2 data volume.

Once the container is launched, we can change the directory to2.
/var/log/myhttpd on the Docker host:

 $ cd /var/log/myhttpd

Perhaps, a quick check of the files present in the /var/log/myhttpd directory is3.
appropriate here:

 $ ls -1
 access.log
 error.log
 other_vhosts_access.log

Here, the access.log file contains all the access requests handled by the
Apache2 HTTP server. The error.log file is a very important log file, where our
HTTP server records the errors it encounters while processing any HTTP requests.
The other_vhosts_access.log file is the virtual host log, which will always be
empty in our case.

Sharing Data with Containers

[151]

We can display the content of all the log files in the /var/log/myhttpd4.
directory using the tail command with the -f option:

 $ tail -f *.log
 ==> access.log <==

 ==> error.log <==
 AH00558: apache2: Could not reliably determine the
 server's fully qualified domain name, using 172.17.0.17.
 Set the 'ServerName' directive globally to suppress this
 message
 [Thu Nov 20 17:45:35.619648 2014] [mpm_event:notice]
 [pid 16:tid 140572055459712] AH00489: Apache/2.4.7
 (Ubuntu) configured -- resuming normal operations
 [Thu Nov 20 17:45:35.619877 2014] [core:notice]
 [pid 16:tid 140572055459712] AH00094: Command line:
 '/usr/sbin/apache2 -D FOREGROUND'
 ==> other_vhosts_access.log <==

The tail -f command will run continuously and display the content of the files,
as soon as they get updated. Here, both access.log and
other_vhosts_access.log are empty, and there are a few error messages on
the error.log file. Apparently, these error logs are generated by the HTTP
service running inside the container. The logs are then stocked in the Docker host
directory, which is mounted during the launch of the container.

As we continue to run tail -f *, let's connect to the HTTP service from a web5.
browser running inside the container, and observe the log files:

 ==> access.log <==
 111.111.172.18 - - [20/Nov/2014:17:53:38 +0000] "GET /
 HTTP/1.1" 200 3594 "-" "Mozilla/5.0 (Windows NT 6.1;
 WOW64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.65
 Safari/537.36"
 111.111.172.18 - - [20/Nov/2014:17:53:39 +0000] "GET
 /icons/ubuntu-logo.png HTTP/1.1" 200 3688
 "http://111.71.123.110/" "Mozilla/5.0 (Windows NT 6.1;
 WOW64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.65
 Safari/537.36"
 111.111.172.18 - - [20/Nov/2014:17:54:21 +0000] "GET
 /favicon.ico HTTP/1.1" 404 504 "-" "Mozilla/5.0 (Windows
 NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/39.0.2171.65 Safari/537.36"

Sharing Data with Containers

[152]

The HTTP service updates the access.log file, which we can manipulate from
the host directory mounted through the -v option of the docker run
subcommand.

Sharing data between containers
In the previous section, you learned how seamlessly the Docker Engine enables data
sharing between the Docker host and the container. Although it is a very effective solution
for most of the use cases, there are use cases wherein you will have to share data between
one or more containers. The Docker's prescription to address this use case is to mount the
data volume of one container to other containers using the --volume-from option of the
docker run subcommand.

Data-only containers
Before Docker introduced the top-level volume management feature, the data-only
container was the recommended approach to achieve data persistency. It is worth
understanding data-only containers because you will find many implementations that are
based on data-only containers. The prime responsibility of a data-only container is to
preserve the data. Creating a data-only container is very similar to the method illustrated in
the Data volume section. In addition, the containers are named explicitly for other containers
to mount the data volume using the container's name. Besides, the container's data volumes
are accessible from other containers even when the data-only containers are in the stopped
state. The data-only containers can be created in two ways, as follows:

During the launch of the container by configuring the data volume and the
container's name
Data volume can also be inscribed with Dockerfile during image-building, and
later, the container can be named during the container's launch

In the following example, we are launching a data-only container by configuring the
container launch with the -v and --name options of the docker run subcommand, as
shown here:

$ sudo docker run --name datavol \
 -v /DataMount \
 busybox:latest /bin/true

Sharing Data with Containers

[153]

Here, the container is launched from the busybox image, which is widely used for its
smaller footprint. Here, we choose to execute the /bin/true command because we don't
intend to do any operations on the container. Therefore, we named the container datavol
using the --name option and created a new /DataMount data volume using the -v option
of the docker run subcommand. The /bin/true command exits immediately with
the 0 exit status, which in turn will stop the container and continue to be in the stopped
state.

Mounting data volume from other containers
The Docker Engine provides a nifty interface to mount (share) the data volume from one
container to another. Docker makes this interface available through the --volumes-from
option of the docker run subcommand. The --volumes-from option takes a container
name or container ID as its input and automatically mounts all the data volumes available
on the specified container. Docker allows you to mount multiple containers with data
volume using the --volumes-from option multiple times.

Here is a practical example that demonstrates how to mount data volume from another
container and showcases the data volume mount step by step:

We begin with launching an interactive Ubuntu container by mounting the data1.
volume from the data-only container (datavol), which we launched in the
previous section:

 $ sudo docker run -it \
 --volumes-from datavol \
 ubuntu:latest /bin/bash

Now from the container's prompt, let's verify the data volume mounts using the2.
mount command:

 root@e09979cacec8:/# mount | grep DataMount
 /dev/xvda2 on /DataMount type ext3
 (rw,noatime,nobarrier,errors=remount-ro,data=ordered)

Here, we successfully mounted the data volume from the datavol data-only
container.

Sharing Data with Containers

[154]

Next, we need to inspect the data volume of this container from another Terminal3.
using the docker inspect subcommand:

 $ sudo docker inspect --format='{{json .Mounts}}'
 e09979cacec8
 [{"Name":
 "7907245e5962ac07b31c6661a4dd9b283722d3e7d0b0fb40a90
 43b2f28365021","Source":
 "/var/lib/docker/volumes
 /7907245e5962ac07b31c6661a4dd9b283722d3e7d0b0fb40a9043b
 2f28365021/_data","Destination":"
 /DataMount","Driver":"local","Mode":"",
 "RW":true,"Propagation":""}]

Evidently, the data volume from the datavol data-only container is mounted as
if they were mounted directly on to this container.

We can mount a data volume from another container and also showcase the mount points.
We can make the mounted data volume to work by sharing data between containers using
the data volume, as demonstrated here:

Let's reuse the container that we launched in the previous example and create a1.
/DataMount/testfile file in the /DataMount data volume by writing some
text to the file, as shown here:

 root@e09979cacec8:/# echo \
 "Data Sharing between Container" > \
 /DataMount/testfile

Just spin off a container to display the text that we wrote in the previous step,2.
using the cat command:

 $ sudo docker run --rm \
 --volumes-from datavol \
 busybox:latest cat /DataMount/testfile

The following is the typical output of the preceding command:

 Data Sharing between Container

Evidently, the preceding Data Sharing between Container output of our newly
containerized cat command is the text that we have written in /DataMount/testfile of
the datavol container in step 1.

Sharing Data with Containers

[155]

Cool, isn't it? You can share data seamlessly between containers by sharing the data
volumes. Here, in this example, we used data-only containers as the base container for data
sharing. However, Docker allows us to share any type of data volumes and to mount data
volumes one after another, as depicted here:

$ sudo docker run --name vol1 --volumes-from datavol \
 busybox:latest /bin/true
$ sudo docker run --name vol2 --volumes-from vol1 \
 busybox:latest /bin/true

Here, in the vol1 container, we mounted the data volume from the datavol container.
Then, in the vol2 container, we mounted the data volume from the vol1 container, which
is eventually from the datavol container.

The practicality of data sharing between
containers
Earlier in this chapter, you learned the mechanism of accessing the log files of the Apache2
HTTP service from the Docker host. Although it was fairly convenient to share data by
mounting the Docker host directory to a container, later we came to know that data can be
shared between containers by just using data volumes. So here, we are bringing in a twist to
the method of the Apache2 HTTP service log handling by sharing data between containers.
To share log files between containers, we will spin off the following containers as enlisted in
the following steps:

First, a data-only container that will expose the data volume to other containers.1.
Then, an Apache2 HTTP service container leveraging the data volume of the2.
data-only container.
A container to view the log files generated by our Apache2 HTTP service.3.

If you are running any HTTP service on the 80 port number of your
Docker host machine, pick any other unused port number for the
following example. If not, first stop the HTTP service, then proceed with
the example in order to avoid any port conflict.

Sharing Data with Containers

[156]

Now, we'll meticulously walk you through the steps to craft the respective images and
launch the containers to view the log files:

Here, we begin with crafting a Dockerfile with the /var/log/apache2 data1.
volume using the VOLUME instruction. The /var/log/apache2 data volume is a
direct mapping to APACHE_LOG_DIR, the environment variable set in the
Dockerfile in Chapter 6, Running Services in a Container, using the ENV
instruction:

 ###
 # Dockerfile to build a LOG Volume for Apache2 Service
 ###
 # Base image is BusyBox
 FROM busybox:latest
 # Author: Dr. Peter
 MAINTAINER Dr. Peter <peterindia@gmail.com>
 # Create a data volume at /var/log/apache2, which is
 # same as the log directory PATH set for the apache image
 VOLUME /var/log/apache2
 # Execute command true
 CMD ["/bin/true"]

Since this Dockerfile is crafted to launch data-only containers, the default
execution command is set to /bin/true.

We will continue to build a Docker image with the apache2log name from the2.
preceding Dockerfile using docker build, as presented here:

 $ sudo docker build -t apache2log .
 Sending build context to Docker daemon 2.56 kB
 Sending build context to Docker daemon
 Step 0 : FROM busybox:latest
 ... TRUNCATED OUTPUT ...

Launch a data-only container from the apache2log image using the docker3.
run subcommand and name the resulting container log_vol, using the --name
option:

 $ sudo docker run --name log_vol apache2log

Acting on the preceding command, the container will create a data volume in
/var/log/apache2 and move it to a stop state.

Sharing Data with Containers

[157]

Meanwhile, you can run the docker ps subcommand with the -a option to4.
verify the container's state:

 $ sudo docker ps -a
 CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS
 NAMES
 40332e5fa0ae apache2log:latest "/bin/true"
 2 minutes ago Exited (0) 2 minutes ago
 log_vol

As per the output, the container exits with the 0 exit value.

Launch the Apache2 HTTP service using the docker run subcommand. Here,5.
we are reusing the apache2 image we crafted in Chapter 6, Running Services in a
Container. Besides, in this container, we will mount the /var/log/apache2 data
volume from log_vol, the data-only container that we launched in step 3, using
the --volumes-from option:

 $ sudo docker run -d -p 80:80 \
 --volumes-from log_vol \
 apache2
 7dfbf87e341c320a12c1baae14bff2840e64afcd082dda3094e7cb0a0023cf42

With the successful launch of the Apache2 HTTP service with the
/var/log/apache2 data volume mounted from log_vol, we can access the log
files using transient containers.

Here, we are listing the files stored by the Apache2 HTTP service, using a6.
transient container. This transient container is spun off by mounting the
/var/log/apache2 data volume from log_vol, and the files in
/var/log/apache2 are listed using the ls command. Further, the --rm option
of the docker run subcommand is used to remove the container once it is done
executing the ls command:

 $ sudo docker run --rm \
 --volumes-from log_vol \
 busybox:latest ls -l /var/log/apache2
 total 4
 -rw-r--r-- 1 root root 0 Dec 5 15:27
 access.log
 -rw-r--r-- 1 root root 461 Dec 5 15:27
 error.log

Sharing Data with Containers

[158]

 -rw-r--r-- 1 root root 0 Dec 5 15:27
 other_vhosts_access.log

Finally, the error log produced by the Apache2 HTTP service is accessed using7.
the tail command, as highlighted in the following command:

 $ sudo docker run --rm \
 --volumes-from log_vol \
 ubuntu:16.04 \
 tail /var/log/apache2/error.log
 AH00558: apache2: Could not reliably determine the
 server's fully qualified domain name, using 172.17.0.24.
 Set the 'ServerName' directive globally to suppress this
 message
 [Fri Dec 05 17:28:12.358034 2014] [mpm_event:notice]
 [pid 18:tid 140689145714560] AH00489: Apache/2.4.7
 (Ubuntu) configured -- resuming normal operations
 [Fri Dec 05 17:28:12.358306 2014] [core:notice]
 [pid 18:tid 140689145714560] AH00094: Command line:
 '/usr/sbin/apache2 -D FOREGROUND'

Avoiding common pitfalls
Until now, we have discussed how effectively data volumes can be used to share data
between the Docker host and the containers as well as between containers. Data sharing
using data volumes is turning out to be a very powerful and essential tool in the Docker
paradigm. However, it does carry a few pitfalls that are to be carefully identified and
eliminated. In this section, we make an attempt to list out a few common issues associated
with data sharing and the ways and means to overcome them.

Directory leaks
Earlier in the Data volume section, you learned that the Docker Engine automatically creates
directories based on the VOLUME instruction in the Dockerfile as well as the -v option of
the docker run subcommand. We also understood that the Docker Engine does not
automatically delete these autogenerated directories in order to preserve the state of the
application(s) run inside the container. We can force Docker to remove these directories
using the -v option of the docker rm subcommand. This process of manual deletion poses
two major challenges enumerated as follows:

Sharing Data with Containers

[159]

Undeleted directories: There can be scenarios where you may intentionally or
unintentionally choose not to remove the generated directory while removing the
container.
Third-party images: Quite often, we leverage third-party Docker images that
could have been built with the VOLUME instruction. Likewise, we might also have
our own Docker images with VOLUME inscribed in it. When we launch containers
using such Docker images, the Docker Engine will autogenerate the prescribed
directories. Since we are not aware of the data volume creation, we may not call
the docker rm subcommand with the -v option to delete the autogenerated
directory.

In the previously mentioned scenarios, once the associated container is removed, there is no
direct way to identify the directories whose containers were removed. Here are a few
recommendations on how to avoid this pitfall:

Always inspect the Docker images using the docker inspect subcommand and
check whether any data volume is inscribed in the image or not.
Always run the docker rm subcommand with the -v option to remove any data
volume (directory) created for the container. Even if the data volume is shared by
multiple containers, it is still safe to run the docker rm subcommand with the -v
option because the directory associated with the data volume will be deleted only
when the last container sharing that data volume is removed.
For any reason, if you choose to preserve the autogenerated directory, you must
keep a clear record so that you can remove them at a later point.
Implement an audit framework that will audit and find out the directories that do
not have any container association.

The undesirable effect of data volume
As mentioned earlier, Docker enables access for us to each data volume in a Docker image
using the VOLUME instruction during the build time. Nevertheless, data volumes should
never be used to store any data during the build time, otherwise it will result in an
unwanted effect.

In this section, we will demonstrate the undesirable effect of using data volume during the
build by crafting a Dockerfile, and then showcase the implication by building this
Dockerfile.

Sharing Data with Containers

[160]

The following are the details of Dockerfile:

Build the image using Ubuntu 16.04 as the base image:1.

 # Use Ubuntu as the base image
 FROM ubuntu:16.04

Create a /MountPointDemo data volume using the VOLUME instruction:2.

 VOLUME /MountPointDemo

Create a file in the /MountPointDemo data volume using the RUN instruction:3.

 RUN date > /MountPointDemo/date.txt

Display the file in the /MountPointDemo data volume using the RUN instruction:4.

 RUN cat /MountPointDemo/date.txt

Proceed to build an image from this Dockerfile using the docker build5.
subcommand, as shown here:

 $ sudo docker build -t testvol .
 Sending build context to Docker daemon 2.56 kB
 Sending build context to Docker daemon
 Step 0 : FROM ubuntu:16.04
 ---> 9bd07e480c5b
 Step 1 : VOLUME /MountPointDemo
 ---> Using cache
 ---> e8b1799d4969
 Step 2 : RUN date > /MountPointDemo/date.txt
 ---> Using cache
 ---> 8267e251a984
 Step 3 : RUN cat /MountPointDemo/date.txt
 ---> Running in a3e40444de2e
 cat: /MountPointDemo/date.txt: No such file or directory
 2014/12/07 11:32:36 The command [/bin/sh -c cat
 /MountPointDemo/date.txt] returned a non-zero code: 1

In the preceding output of the docker build subcommand, you would have noticed that
the build fails in step 3 because it could not find the file created in step 2. Apparently, the
file that was created in step 2 vanishes when it reaches step 3. This undesirable effect is due
to the approach Docker uses to build its images. An understanding of the Docker image-
building process will unravel the mystery.

Sharing Data with Containers

[161]

In the build process, for every instruction in a Dockerfile, the following steps are
followed:

Create a new container by translating the Dockerfile instruction to an1.
equivalent docker run subcommand.
Commit the newly-created container to an image.2.
Repeat steps 1 and 2 by treating the newly-created image as the base image for3.
step 1.

When a container is committed, it saves the filesystem of the container and deliberately
does not save the filesystem of the data volumes. Therefore, any data stored in the data
volume will be lost in this process. So, never use a data volume as a storage during the
build process.

Summary
For enterprise-scale distributed applications to be distinct in their operations and outputs,
data is the most important instrument and ingredient. With IT containerization, the journey
takes off in a brisk and bright fashion. IT as well as business software solutions are
intelligently containerized through the smart leverage of the Docker Engine. However, the
original instigation is the need for a faster and flawless realization of application-aware
Docker containers, and hence, the data is tightly coupled with the application within the
container. However, this closeness brings in some real risks. If the application collapses,
then the data is also gone. Also, multiple applications might depend on the same data and
hence, data has to be shared across.

In this chapter, we discussed the capabilities of the Docker Engine in facilitating the
seamless data sharing between the Docker host and container as well as between containers.
The data volume is being prescribed as the foundational building block for enabling data
sharing among the constituents of the growing Docker ecosystem. In the next chapter, we
will explain the concept behind the container orchestration, and see how this complicated
aspect gets simplified through a few automated tools. Orchestration is indispensable for
realizing composite containers.

8
Orchestrating Containers

In the earlier chapters, we laid down a strong foundation on the need for container
networking, how to run a service inside a Docker container, and how to expose this service
to the outside world by opening up network ports and other prerequisites. However,
recently, there are advanced mechanisms being made available and a few third-party
orchestration platforms hitting the market for sagaciously establishing dynamic and
decisive linkages between distributed and differently-enabled containers in order to
compose powerful containers for comprehensively, yet compactly containing process-
centric, multi-tiered, and enterprise-class distributed applications. In the extremely
diversified yet connected world, the concept of orchestration cannot be kept away from the
deserved prominence for long. This chapter is precisely allocated for explaining the nitty-
gritty of container orchestration, and its direct role is in picking up discrete containers to
systematically compose sophisticated containers that are more directly aligned with the
varying business expectations and expediencies.

In this chapter, we will discuss the following topics in detail:

Linking containers
Orchestrating containers
Orchestrating containers using the docker-compose tool

As mission-critical applications are overwhelmingly being built through loosely coupled,
yet highly cohesive components/services destined to run on geographically-distributed IT
infrastructures and platforms, the concept of composition is getting a lot of attention and
attraction. For sustaining the well-begun containerization journey, the orchestration of
containers is being prescribed as one of the most critical and crucial requirements in the
ensuing, instant-on, adaptive, and smart IT era. There are a few proven and promising
methods and standards-compliant tools for enabling the enigmatic orchestration goals.

Orchestrating Containers

[163]

Docker inbuilt service discovery
The Docker platform inherently supports the service discovery for the containers that are
attached to any user-defined network using an embedded Domain Name Service (DNS).
This functionality has been added to Docker since the version 1.10. The embedded DNS
feature enables the Docker containers to discover each other using their names or aliases
within the user-defined network. In other words, the name resolution request from the
container is first sent to the embedded DNS. The user-defined network then uses a
special 127.0.0.11 IP address for the embedded DNS, which is also listed in
/etc/resolv.conf.

The following example will help to gain a better understanding of Docker's built-in service
discovery capability:

Let's begin by creating a user-defined bridge network, mybridge, using the1.
following command:

 $ sudo docker network create mybridge

Inspect the newly created network to understand the subnet range and gateway2.
IP:

 $ sudo docker network inspect mybridge
 [
 {
 "Name": "mybridge",
 "Id":
"36e5e088543895f6d335eb92299ee8e118cd0610e0d023f7c42e6e603b935e17",
 "Created":
 "2017-02-12T14:56:48.553408611Z",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,

Orchestrating Containers

[164]

 "Containers": {},
 "Options": {},
 "Labels": {}
 }
]

Here, the subnet assigned to the mybridge network is 172.18.0.0/16 and the
gateway is 172.18.0.1.

Now, let's create a container by attaching it to the mybridge network, as shown3.
here:

 $ sudo docker container run \
 -itd --net mybridge --name testdns ubuntu

Continue to list the IP address assigned to the container, as illustrated here:4.

 $ sudo docker container inspect --format \
 '{{.NetworkSettings.Networks.mybridge.IPAddress}}' \
 testdns
 172.18.0.2

Evidently, the testdns container is assigned a 172.18.0.2 IP address.
The 172.18.0.2 IP address is from the subnet of the mybridge network (that is,
172.18.0.0/16).

Having got the IP address of the container, let's look into the content of5.
the /etc/resolv.conf file of the container using the docker container
exec subcommand, as shown here:

 $ sudo docker container exec testdns \
 cat /etc/resolv.conf
 nameserver 127.0.0.11
 options ndots:0

Here the nameserver is configured as 127.0.0.11, which is the IP address of the
embedded DNS.

Orchestrating Containers

[165]

As a final step, let's ping the testdns container using the busybox image. We6.
picked the busybox image here because the ubuntu image is shipped without
the ping command:

 $ sudo docker container run --rm --net mybridge \
 busybox ping -c 2 testdns
 PING testdns (172.18.0.2): 56 data bytes
 64 bytes from 172.18.0.2: seq=0 ttl=64
 time=0.085 ms
 64 bytes from 172.18.0.2: seq=1 ttl=64
 time=0.133 ms

 --- testdns ping statistics ---
 2 packets transmitted, 2 packets received,
 0% packet loss
 round-trip min/avg/max = 0.085/0.109/0.133 ms

Awesome, isn't it! The folks behind Docker have made it so simple that with no effort we
are able to discover the containers in the same network.

Linking containers
Before the introduction of the concept of the user-defined network, container linking was
predominantly used for inter-container discovery and communication. That is, cooperating
containers can be linked together to offer complex and business-aware services. The linked
containers have a kind of source-recipient relationship, wherein the source container gets
linked to the recipient container, and the recipient securely receives a variety of information
from the source container. However, the source container will know nothing about the
recipients to which it is linked. Another noteworthy feature of linking containers in a
secured setup is that the linked containers can communicate using secure tunnels without
exposing the ports used for the setup to the external world. Though you will find lots of
deployments that use container-linking techniques, they are cumbersome and time-
consuming to configure. Also, they are error-prone. So the new method of embedded DNS
is highly preferred over the traditional container-linking techniques.

The Docker Engine provides the --link option in the docker run subcommand to link a
source container to a recipient container.

The format of the --link option is as follows:

--link <container>:<alias>

Orchestrating Containers

[166]

Here, <container> is the name of the source container and <alias> is the name seen by
the recipient container. The name of the container must be unique in a Docker host, whereas
alias is very specific and local to the recipient container, and hence, the alias need not be
unique in the Docker host. This gives a lot of flexibility to implement and incorporate
functionalities with a fixed source alias name inside the recipient container.

When two containers are linked together, the Docker Engine automatically exports a few
environment variables to the recipient container. These environment variables have a well-
defined naming convention, where the variables are always prefixed with the capitalized
form of the alias name. For instance, if src is the alias name given to the source container,
then the exported environment variables will begin with SRC_. Docker exports three
categories of environment variables, as enumerated here:

NAME: This is the first category of environment variables. These variables take the
form of <ALIAS>_NAME, and they carry the recipient container's hierarchical
name as their value. For instance, if the source container's alias is src and the
recipient container's name is rec, then the environment variable and its value
will be SRC_NAME=/rec/src.
ENV: This is the second category of environment variables used to export the
environment variables configured in the source container by the -e option of the
docker run subcommand or the ENV instruction of the Dockerfile. This type
of an environment variable takes the form of <ALIAS>_ENV_<VAR_NAME>. For
instance, if the source container's alias is src and the variable name is SAMPLE,
then the environment variable will be SRC_ENV_SAMPLE.
PORT: This is the final and third category of environment variables that is used to
export the connectivity details of the source container to the recipient. Docker
creates a bunch of variables for each port exposed by the source container
through the -p option of the docker run subcommand or the EXPOSE
instruction of the Dockerfile.

These variables take the <ALIAS>_PORT_<port>_<protocol> form. This form is
used to share the source's IP address, port, and protocol as a URL. For example, if
the source container's alias is src, the exposed port is 8080, the protocol is tcp,
and the IP address is 172.17.0.2, then the environment variable and its value
will be SRC_PORT_8080_TCP=tcp://172.17.0.2:8080. This URL further splits
into the following three environment variables:

<ALIAS>_PORT_<port>_<protocol>_ADDR: This form carries the IP
address part of the URL (for example, SRC_PORT_8080_TCP_ADDR=
172.17.0.2)

Orchestrating Containers

[167]

<ALIAS>_PORT_<port>_<protocol>_PORT: This form carries the
port part of the URL (for example, SRC_PORT_8080_TCP_PORT=8080)
<ALIAS>_PORT_<port>_<protocol>_PROTO: This form carries the
protocol part of the URL (for example,
SRC_PORT_8080_TCP_PROTO=tcp)

In addition to the preceding environment variables, the Docker Engine exports one more
variable in this category, that is, of the <ALIAS>_PORT form, and its value will be the URL
of the lowest number of all the exposed ports of the source container. For instance, if the
source container's alias is src, the exposed port numbers are 7070, 8080, and 80, the
protocol is tcp, and the IP address is 172.17.0.2, then the environment variable and its
value will be SRC_PORT=tcp://172.17.0.2:80.

Docker exports these autogenerated environment variables in a well-structured format so
that they can be easily discovered programmatically. Thus, it becomes very easy for the
recipient container to discover the information about the source container. In addition,
Docker automatically updates the source IP address and its alias as an entry in
the /etc/hosts file of the recipient.

In this chapter, we will dive deep into the mentioned features provided by the Docker
Engine for container linkage through a bevy of pragmatic examples.

To start with, let's choose a simple container linking example. Here, we will show you how
to establish a linkage between two containers, and transfer some basic information from the
source container to the recipient container, as illustrated in the following steps:

We begin with launching an interactive container that can be used as a source1.
container for linking, using the following command:

 $ sudo docker run --rm --name example -it \
 busybox:latest

The container is named example using the --name option. In addition, the --rm
option is used to clean up the container as soon as you exit from the container.

Display the /etc/hosts entry of the source container using the cat command:2.

 / # cat /etc/hosts
 172.17.0.3 a02895551686
 127.0.0.1 localhost
 ::1 localhost ip6-localhost ip6-loopback
 fe00::0 ip6-localnet
 ff00::0 ip6-mcastprefix

Orchestrating Containers

[168]

 ff02::1 ip6-allnodes
 ff02::2 ip6-allrouters

Here, the first entry in the /etc/hosts file is the source container's IP address
(172.17.0.3) and its hostname (a02895551686).

We will continue to display the environment variables of the source container3.
using the env command:

 / # env
 HOSTNAME=a02895551686
 SHLVL=1
 HOME=/root
 TERM=xterm
 PATH=
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 PWD=/

We have now launched the source container. From another Terminal of the same4.
Docker host, let's launch the interactive recipient container by linking it to our
source container using the --link option of the docker run subcommand, as
shown here:

 $ sudo docker run --rm --link example:ex \
 -it busybox:latest

Here, the source container named example is linked to the recipient container
with ex as its alias.

Let's display the content of the /etc/hosts file of the recipient container using5.
the cat command:

 / # cat /etc/hosts
 172.17.0.4 a17e5578b98e
 127.0.0.1 localhost
 ::1 localhost ip6-localhost ip6-loopback
 fe00::0 ip6-localnet
 ff00::0 ip6-mcastprefix
 ff02::1 ip6-allnodes
 ff02::2 ip6-allrouters
 72.17.0.3 ex

Orchestrating Containers

[169]

Of course, as always, the first entry in the /etc/hosts file is the IP address of the
container and its hostname. However, the noteworthy entry in the /etc/hosts
file is the last entry, where the IP address (172.17.0.3) of the source container
and its alias (ex) are added automatically.

We will continue to display the recipient container's environment variable using6.
the env command:

 / # env
 HOSTNAME=a17e5578b98e
 SHLVL=1
 HOME=/root
 EX_NAME=/berserk_mcclintock/ex
 TERM=xterm
 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 PWD=/

Apparently, a new EX_NAME environment variable is added automatically to
/berserk_mcclintock/ex, as its value. Here EX is the capitalized form of the
alias ex and berserk_mcclintock is the autogenerated name of the recipient
container.

As a final step, ping the source container using the widely used ping command7.
for two counts and use the alias name as the ping address:

 / # ping -c 2 ex
 PING ex (172.17.0.3): 56 data bytes
 64 bytes from 172.17.0.3: seq=0 ttl=64
 time=0.108 ms
 64 bytes from 172.17.0.3: seq=1 ttl=64
 time=0.079 ms

 --- ex ping statistics ---
 2 packets transmitted, 2 packets received,
 0% packet loss
 round-trip min/avg/max = 0.079/0.093/0.108 ms

Evidently, the alias ex of the source container is resolved to the 172.17.0.3 IP address,
and the recipient container is able to successfully reach the source. In the case of secured
container communication, pinging between containers is not allowed. We will see more
details on the aspect of securing containers in Chapter 11, Securing Docker Containers.

In the preceding example, we can link two containers together, and also, observe how
elegantly networking is enabled between the containers by updating the IP address of the
source container in the /etc/hosts file of the recipient container.

Orchestrating Containers

[170]

The next example is to demonstrate how container linking exports the environment
variables of the source container, which are configured using the -e option of the docker
run subcommand or the ENV instruction of Dockerfile, to the recipient container. For this
purpose, we are going to craft a file named Dockerfile with the ENV instruction, build an
image, launch a source container using this image, and then launch a recipient container by
linking it to the source container:

We begin with composing a Dockerfile with the ENV instruction, as shown1.
here:

 FROM busybox:latest
 ENV BOOK="Learning Docker" \
 CHAPTER="Orchestrating Containers"

Here, we are setting up two environment variables, BOOK and CHAPTER.

Proceed to build a Docker image envex using the docker build subcommand2.
from the preceding Dockerfile:

 $ sudo docker build -t envex .

Now, let's launch an interactive source container with the example name using3.
the envex image we just built:

 $ sudo docker run -it --rm \
 --name example envex

From the source container prompt, display all the environment variables by4.
invoking the env command:

 / # env
 HOSTNAME=b53bc036725c
 SHLVL=1
 HOME=/root
 TERM=xterm
 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 BOOK=Learning Docker
 CHAPTER=Orchestrating Containers
 PWD=/

In all the preceding environment variables, both the BOOK and the CHAPTER
variables are configured with the ENV instruction of the Dockerfile.

Orchestrating Containers

[171]

As a final step, to illustrate the ENV category of environment variables, launch the5.
recipient container with the env command, as shown here:

 $ sudo docker run --rm --link example:ex \
 busybox:latest env
 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 HOSTNAME=a5e0c07fd643
 TERM=xterm
 EX_NAME=/stoic_hawking/ex
 EX_ENV_BOOK=Learning Docker
 EX_ENV_CHAPTER=Orchestrating Containers
 HOME=/root

This example is also available on GitHub at
https://github.com/thedocker/learning-docker/blob/master/chap08/

Dockerfile-Env.

Strikingly, in the preceding output, the variables that are prefixed with EX_ are the outcome
of container linking. The environment variables of our interest are EX_ENV_BOOK and
EX_ENV_CHAPTER, which were originally set through the Dockerfile as BOOK and
CHAPTER but modified to EX_ENV_BOOK and EX_ENV_CHAPTER, as an effect of container
linking. Though the environment variable names get translated, the values stored in these
environment variables are preserved as is. We already discussed the EX_NAME variable
name in the previous example.

In the preceding example, we experienced how elegantly and effortlessly Docker exports
the ENV category variables from the source container to the recipient container. These
environment variables are completely decoupled from the source and the recipient, thus a
change in the value of these environment variables in one container does not impact the
other. To be even more precise, the values the recipient container receives are the values set
during the launch of the source container. Any changes made to the value of these
environment variables in the source container after its launch have no effect on the recipient
container. It does not matter when the recipient container is launched because the values
are being read from the JSON file.

In our final illustration of linking containers, we are going to show you how to take
advantage of the Docker feature to share the connectivity details between two containers. In
order to share the connectivity details between containers, Docker uses the PORT category of
environment variables. The following are the steps used to craft two containers and share
the connectivity details between them:

Orchestrating Containers

[172]

Craft a Dockerfile to expose port 80 and 8080 using the EXPOSE instruction, as1.
shown here:

 FROM busybox:latest
 EXPOSE 8080 80

Proceed to build a portex Docker image using the docker build subcommand2.
from the Dockerfile, we created just now, by running the following command:

 $ sudo docker build -t portex .

Now, let's launch an interactive source container with the example name using3.
the earlier built portex image:

 $ sudo docker run -it --rm --name example portex

Now that we have launched the source container, let's continue to create a4.
recipient container on another Terminal by linking it to the source container, and
invoke the env command to display all the environment variables, as shown
here:

 $ sudo docker run --rm --link example:ex \
 busybox:latest env
 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 HOSTNAME=c378bb55e69c
 TERM=xterm
 EX_PORT=tcp://172.17.0.4:80
 EX_PORT_80_TCP=tcp://172.17.0.4:80
 EX_PORT_80_TCP_ADDR=172.17.0.4
 EX_PORT_80_TCP_PORT=80
 EX_PORT_80_TCP_PROTO=tcp
 EX_PORT_8080_TCP=tcp://172.17.0.4:8080
 EX_PORT_8080_TCP_ADDR=172.17.0.4
 EX_PORT_8080_TCP_PORT=8080
 EX_PORT_8080_TCP_PROTO=tcp
 EX_NAME=/prickly_rosalind/ex
 HOME=/root

This example is also available on GitHub at
https://github.com/thedocker/learning-docker/blob/master/chap08/

Dockerfile-Expose.

Orchestrating Containers

[173]

From the preceding output of the env command, it is quite evident that the Docker Engine
exported a bunch of four PORT category environment variables for each port that was
exposed using the EXPOSE instruction in the Dockerfile. In addition, Docker also
exported another PORT category variable EX_PORT.

Orchestration of containers
The pioneering concept of orchestration in the IT domain has been there for a long time
now. For instance, in the Service Computing (SC) arena, the idea of service orchestration
has been thriving in an unprecedented manner in order to produce and sustain highly
robust and resilient services. Discrete or atomic services do not serve any substantial
purpose unless they are composed together in a particular sequence to derive process-
aware composite services. As orchestrated services are more strategically advantageous for
businesses in expressing and exposing their unique capabilities in the form of
identifiable/discoverable, interoperable, usable, and composable services to the outside
world, corporates are showing exemplary interest in having an easily searchable repository
of services (atomic as well as composite). This repository, in turn, enables businesses in
realizing large-scale data as well as process-intensive applications. It is clear that the
multiplicity of services is very pivotal for organizations to grow and glow. This increasingly
mandated requirement gets solved using the proven and promising orchestration
capabilities cognitively.

Now, as we are fast tending toward containerized IT environments, application and data
containers ought to be smartly composed to realize a host of new generation software
services.

However, for producing highly competent orchestrated containers, both purpose-specific as
well as agnostic containers need to be meticulously selected and launched in the right
sequence in order to create orchestrated containers. The sequence can come from the
process (control as well as data) flow diagrams. Doing this complicated and daunting
activity manually evokes a series of cynicisms and criticisms. Fortunately, there are
orchestration tools in the Docker space that come in handy to build, run, and manage
multiple containers to build enterprise-class services. The Docker firm, which has been in
charge of producing and promoting the generation and assembly of Docker-inspired
containers, has come out with a standardized and simplified orchestration tool (named as
docker-compose) in order to reduce the workloads of developers as well as system
administrators.

Orchestrating Containers

[174]

The proven composition technique of the SC paradigm is being replicated here in the raging
containerization paradigm in order to reap the originally envisaged benefits of
containerization, especially in building powerful application-aware containers.

The Microservice Architecture (MSA) is an architectural concept that aims to decouple a
software solution by decomposing its functionality in a pool of discrete services. This is
done by applying an architectural level to many of the principles. The MSA is slowly
emerging as a championed way to design and build large-scale IT and business systems. It
not only facilitates loose and light coupling and software modularity but it is also a boon to
continuous integration and deployment for the agile world. Any changes being made to one
part of the application mandates massive changes that are made to the application as a
whole. This has been a bane and barrier to the aspect of continuous deployment.
Microservices aim to resolve this situation, and hence, the MSA needs light-weight
mechanisms, small, independently deployable services, and to ensure scalability and
portability. These requirements can be met using Docker-sponsored containers.

Microservices are being built around business capabilities and can be independently
deployed by fully automated deployment machinery. Each microservice can be deployed
without interrupting the other microservices, and containers provide an ideal deployment
and execution environment for services along with other noteworthy facilities, such as the
reduced time to deployment, isolation management, and a simple life cycle. It is easy to
quickly deploy new versions of services inside containers. All of these factors led to the
explosion of microservices using the features that Docker had to offer.

As explained, Docker is being positioned as the next-generation containerization
technology, which provides a proven and potentially sound mechanism to distribute
applications in a highly efficient and distributed fashion. The beauty is that developers can
tweak the application pieces within the container while maintaining the overall integrity of
the container. This has a bigger impact as the brewing trend is that instead of large
monolithic applications distributed on a single physical or virtual server, companies are
building smaller, self-defined and contained, easily manageable, and discrete services to be
contained inside standardized and automated containers. In short, the raging
containerization technology from Docker has come as a boon for the ensuing era of
microservices.

Orchestrating Containers

[175]

Docker was built and sustained to fulfill the elusive goal of run it once and run it everywhere.
Docker containers are generally isolated at the process level, portable across IT
environments, and easily repeatable. A single physical host can host multiple containers,
and hence, every IT environment is generally stuffed with a variety of Docker containers.
The unprecedented growth of containers is to spell out troubles for effective container
management. The multiplicity and the associated heterogeneity of containers are used to
sharply increase the management complexities of containers. Hence, the technique of
orchestration and the flourishing orchestration tools have come as a strategic solace for
accelerating the containerization journey in safe waters.

Orchestrating applications that span multiple containers containing microservices has
become a major part of the Docker world, via projects, such as Google's Kubernetes or
Flocker. Decking is another option used to facilitate the orchestration of Docker containers.
Docker's new offering in this area is a set of three orchestration services designed to cover
all aspects of the dynamic life cycle of distributed applications from application
development to deployment and maintenance. Helios is another Docker orchestration
platform used to deploy and manage containers across an entire fleet. In the beginning, fig
was the most preferred tool for container orchestration. However, in the recent past, the
company at the forefront of elevating the Docker technology has come out with an
advanced container orchestration tool (docker-compose) to make life easier for developers
working with Docker containers as they move through the container life cycle.

Having realized the significance of having the capability of container orchestration for the
next generation, business-critical, and containerized workloads, the Docker company
purchased the company that originally conceived and concretized the fig tool. Then, the
Docker company appropriately renamed the tool as docker-compose and brought in a
good number of enhancements to make the tool more tuned to the varying expectations of
the containers' developers and operation teams.

Here is a gist of docker-compose, which is being positioned as a futuristic and flexible tool
used for defining and running complex applications with Docker. With docker-compose,
you define your application's components (their containers, configuration, links, volumes,
and so on) in a single file, and then, you can spin everything up with a single command,
which does everything to get it up and running.

This tool simplifies container management by providing a set of built-in tools to do a
number of jobs that are being performed manually at this point in time. In this section, we
supplied all the details of using docker-compose to perform orchestration of containers in
order to have a stream of next-generation distributed applications.

Orchestrating Containers

[176]

Orchestrating containers using docker-compose
In this section, we will discuss the widely used container orchestration tool docker-
compose. The docker-compose tool is a very simple, yet power tool and has been
conceived and concretized to facilitate the running of a group of Docker containers. In other
words, docker-compose is an orchestration framework that lets you define and control a
multi-container service. It enables you to create a fast and isolated development
environment as well as orchestrating multiple Docker containers in production. The
docker-compose tool internally leverages the Docker Engine for pulling images, building
the images, starting the containers in the correct sequence, and making the right
connectivity/linking among the containers/services based on the definition given in the
docker-compose.yml file.

Installing docker-compose
At the time of writing this book, the latest release of docker-compose is 1.11.2, and it is
recommended that you use it with the Docker release 1.9.1 or above. You can find the latest
official release of docker-compose at the GitHub location
(https://github.com/docker/compose/releases/latest).

We have automated the installation process of docker-compose and also made it available
for public consumption at http://sjeeva.github.io/getcompose. These automated scripts
precisely identify the latest version of docker-compose, download it, and install it at
/usr/local/bin/docker-compose:

Use the wget tool like this:

 $ wget -qO- http://sjeeva.github.io/getcompose \
 | sudo sh

Use the curl tool like this:

 $ curl -sSL http://sjeeva.github.io/getcompose \
 | sudo sh

Orchestrating Containers

[177]

Alternatively, you may choose to install a particular version of docker-compose directly
from the GitHub software repository. Here, you can find the ways and means of
downloading and installing the docker-compose version 1.11.2:

Use the wget tool like this:

sudo sh -c 'wget -qO- \
 https://github.com/docker/compose/releases/tag/1.11.2/ \
 docker-compose-`uname -s`-`uname -m` > \
 /usr/local/bin/docker-compose; \
 chmod +x /usr/local/bin/docker-compose'

Use the curl tool like this:

curl -L
https://github.com/docker/compose/releases/download/1.11.2/docker-compose-`
uname -s`-`uname -m` > /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose

The docker-compose tool is also available as a Python package, which you can install
using the pip installer, as shown here:

$ sudo pip install -U docker-compose

If pip is not installed on the system, install the pip package before the
docker-compose installation.

Having successfully installed docker-compose, you can now check the docker-compose
version:

$ docker-compose --version
docker-compose version 1.11.2, build dfed245

Orchestrating Containers

[178]

The docker-compose file
The docker-compose tool orchestrates containers using YAML, which is a Yet Another
Markup Language called the docker-compose file. YAML is a human-friendly data
serialization format. Docker began its journey as a container enablement tool, and it is
growing by leaps and bounds as an ecosystem to automate and accelerate most of the tasks
such as container provisioning, networking, storage, management, orchestration, security,
governance, and persistence. Consequently, the docker-compose file format and its
version are revised multiple times to keep up with the Docker platform. At the time of
writing this edition, the latest version of the docker-compose file is version 3. The
following table lists the docker-compose file and the Docker Engine version compatibility
matrix:

Docker Compose
file format

Docker Engine Remarks

3, 3.1 1.13.0+ Provides support for docker stack deploy and
docker secrets

2.1 1.12.0+ Introduced a few new parameters

2 1.10.0+ Introduced support for named volumes and
networks

1 1.9.0+ Will be deprecated in the future compose releases

The docker-compose tool by default uses a file named as docker-compose.yml or
docker-compose.yaml to orchestrate containers. This default file can be modified using
the -f option of the docker-compose tool. The following is the format of the docker-
compose file:

version: "<version>"
services:
 <service>:
 <key>: <value>
 <key>:
 - <value>
 - <value>
networks:
 <network>:
 <key>: <value>

volumes:
 <volume>:
 <key>: <value>

Orchestrating Containers

[179]

Here, the options used are as follows:

<version>: This is the version of the docker-compose file. Refer to the
preceding version table.
<service>: This is the name of the service. You can have more than one service
definition in a single docker-compose file. The service name should be followed
by one or more keys. However, all the services must either have an image or a
build key, followed by any number of optional keys. Except for the image and
build keys, the rest of the keys can be directly mapped to the options in the
docker run subcommand. The value can be either a single value or multiple
values. All the <service> definitions must be grouped under the top-level
services key.
<network>: This is the name of the networks that are used by the services. All
the <network> definitions must be grouped under the top-level networks key.
<volume>: This is the name of the volume that is used by the services. All
the <volume> definitions must be grouped under the top-level volume key.

Here, we are listing a few keys supported in the docker-compose file version 3. Refer to
https://docs.docker.com/compose/compose-file for all the keys supported by docker-
compose.

image: This is the tag or image ID.
build: This is the path to a directory containing a Dockerfile.
command: This key overrides the default command.
deploy: This key has many subkeys and is used to specify deployment
configuration. This is used only in the docker swarm mode.
depends_on: This is used to specify the dependencies between services. It can be
further extended to chain services based on their conditions.
cap_add: This adds a capability to the container.
cap_drop: This drops a capability of the container.
dns: This sets custom DNS servers.
dns_search: This sets custom DNS search servers.
entrypoint: This key overrides the default entrypoint.
env_file: This key lets you add environment variables through files.
environment: This adds environment variables and uses either an array or a
dictionary.
expose: This key exposes ports without publishing them to the host machine.

Orchestrating Containers

[180]

extends: This extends another service defined in the same or a different
configuration file.
extra_hosts: This enables you to add additional hosts to /etc/hosts inside
the container.
healthcheck: This allows us to configure the service health check.
labels: This key lets you add metadata to your container.
links: This key links to containers in another service. Usage of links is strongly
discouraged.
logging: This is used to configure the logging for the service.
network: This is used to join the service to the network defined in the top-level
networks key.
pid: This enables the PID space sharing between the host and the containers.
ports: This key exposes ports and specifies both the
HOST_port:CONTAINER_port ports.
volumes: This key mounts path or named volumes. The named volumes need to
be defined in the top-level volumes key.

The docker-compose command
The docker-compose tool provides sophisticated orchestration functionality with a
handful of commands. In this section, we will list out the docker-compose options and
commands:

docker-compose [<options>] <command> [<args>...]

The docker-compose tool supports the following options:

-f, --file <file>: This specifies an alternate file for docker-compose (default
is the docker-compose.yml file)
-p, --project-name <name>: This specifies an alternate project name (default is
the directory name)
--verbose: This shows more output
-v, --version: This prints the version and exits
-H, --host <host>: This is to specify the daemon socket to connect to
-tls, --tlscacert, --tlskey, and --skip-hostname-check: The docker-
compose tool also supports these flags for Transport Layer Security (TLS)

Orchestrating Containers

[181]

The docker-compose tool supports the following commands:

build: This command builds or rebuilds services.
bundle: This is used to create a Docker bundle from the compose file, this is still
an experimental feature on Docker 1.13.
config: This is a command to validate and display the compose file.
create: This creates the services defined in the compose file.
down: This command is used to stop and remove containers and networks.
events: This can be used to view the real-time container life cycle events.
exec: This enables you to run a command in a running container. It is used
predominantly for debugging purposes.
kill: This command kills running containers.
logs: This displays the output from the containers.
pause: This command is used to pause services.
port: This prints the public port for a port binding.
ps: This lists the containers.
pull: This command pulls the images from the repository.
push: This command pushes the images to the repository.
restart: This is used to restart the services defined in the compose file.
rm: This removes the stopped containers.
run: This runs a one-off command.
scale: This sets a number of containers for a service.
start: This command starts services defined in the compose file.
stop: This stops services.
unpause: This command is used to unpause services.
up: This creates and starts containers.
version: This prints the version of Docker Compose.

Common usage
In this section, we are going to experience the power of the orchestration feature provided
by the Docker Compose framework with the help of an example. For this purpose, we are
going to build a two-tiered web application that will receive your inputs through a URL
and respond with the associated response text. This application is built using the following
two services, as enumerated here:

Orchestrating Containers

[182]

Redis: This is a key-value database used to store a key and its associated value
Node.js: This is a JavaScript runtime environment used to implement the web
server functionality as well the application logic

Each of these services is packed inside two different containers that are stitched together
using the docker-compose tool. The following is the architectural representation of the
services:

Here, in this example, we begin with implementing the example.js module, a Node.js file
to realize the web server, and the key lookup functionality. Further, we will craft the
Dockerfile on the same directory as example.js to package the Node.js runtime
environment, and then, define the service orchestration using a docker-compose.yml file
in the same directory as example.js.

The following is the example.js file, which is a Node.js implementation of the simple
request/response web application. For demonstration, in this sample code, we restrict the
request and response for just two docker-compose commands (build and kill). For the
code to be self-explanatory, we added comments in the code:

// A Simple Request/Response web application

// Load all required libraries
var http = require('http');
var url = require('url');
var redis = require('redis');

// Connect to redis server running
// createClient API is called with
// -- 6379, a well-known port to which the
// redis server listens to
// -- redis, is the name of the service (container)
// that runs redis server
var client = redis.createClient(6379, 'redis');

// Set the key value pair in the redis server

Orchestrating Containers

[183]

// Here all the keys proceeds with "/", because
// URL parser always have "/" as its first character
client.set("/", "Welcome to Docker-Compose helpernEnter the docker-compose
command in the URL for helpn", redis.print);
client.set("/build", "Build or rebuild services", redis.print);
client.set("/kill", "Kill containers", redis.print);

var server = http.createServer(function (request, response) {
 var href = url.parse(request.url, true).href;
 response.writeHead(200, {"Content-Type": "text/plain"});

 // Pull the response (value) string using the URL
 client.get(href, function (err, reply) {
 if (reply == null) response.write("Command: " +
 href.slice(1) + " not supportedn");
 else response.write(reply + "n");
 response.end();
 });
});

console.log("Listening on port 80");
server.listen(80);

This example is also available at
https://github.com/thedocker/learning-docker/tree/master/chap08/

orchestrate-using-compose.

The following text is the content of Dockerfile that packs the Node.js image, the redis
driver for Node.js, and the example.js file, as defined earlier:

###
Dockerfile to build a sample web application
###

Base image is node.js
FROM node:latest

Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>

Install redis driver for node.js
RUN npm install redis

Copy the source code to the Docker image
ADD example.js /myapp/example.js

Orchestrating Containers

[184]

This code is also available at
https://github.com/thedocker/learning-docker/tree/master/chap08/

orchestrate-using-compose.

The following text is from the docker-compose.yml file that defines the services that the
Docker Compose tool orchestrates:

version: "3.1"
services:
 web:
 build: .
 command: node /myapp/example.js
 depends_on:
 - redis
 ports:
 - 8080:80
 redis:
 image: redis:latest

This example is also available at
https://github.com/thedocker/learning-docker/tree/master/chap08/

orchestrate-using-compose.

We defined two services in this docker-compose.yml file, wherein these services serve the
following purposes:

The service named web is built using the Dockerfile in the current directory.
Also, it is instructed that you launch the container by running the node (the
Node.js runtime) with /myapp/example.js (web application implementation),
as its argument. Since this Node.js application uses the redis database, the web
service is forced to start after the redis service using the depends_on
instruction. Besides, the 80 container port is mapped to the 8080 Docker host's
port.
The service named redis is instructed to launch a container with the
redis:latest image. If the image is not present in the Docker host, the Docker
Engine will pull it from the central repository or the private repository.

Orchestrating Containers

[185]

Now, let's continue with our example by building the Docker images using the docker-
compose build command, launch the containers using the docker-compose up
command, and connect with a browser to verify the request/response functionality, as
explained step by step here:

The docker-compose commands must be executed from the directory in which1.
the docker-compose.yml file is stored. Besides, docker-compose considers
each docker-compose.yml file as a project, and it assumes the project name
from the docker-compose.yml file's directory. Of course, this can be overridden
using the -p option. So, as a first step, let's change the directory, wherein the
docker-compose.yml file is stored:

 $ cd ~/example

Build the services using the docker-compose build command:2.

 $ sudo docker-compose build

Pull the images from the repository using the docker-compose pull command:3.

 $ sudo docker-compose pull

Proceed to bring up the services as indicated in the docker-compose.yml file4.
using the docker-compose up command:

 $ sudo docker-compose up
 Creating network "example_default" with the default
 driver
 Creating example_redis_1
 Creating example_web_1
 Attaching to example_redis_1, example_web_1
 redis_1 | 1:C 03 Feb 18:09:40.743 # Warning: no
 config file specified, using the default config.
 In order to specify a config file use redis-server
 /path/to/redis.conf
 . . . TRUNCATED OUTPUT . . .
 redis_1 | 1:M 03 Feb 18:03:47.438 * The server
 is now ready to accept connections on port 6379
 web_1 | Listening on port 80
 web_1 | Reply: OK
 web_1 | Reply: OK
 web_1 | Reply: OK

Orchestrating Containers

[186]

Since the directory name is example, the docker-compose tool has assumed that
the project name is example. If you pay attention to the first line of the output,
you will notice the example_default network being created. The Docker
Compose tool creates this bridge network by default and this network is used by
the service for IP address resolution. Thus the services can reach the other services
by just using the service names defined in the compose file.

Having successfully orchestrated the services using the docker-compose tool,5.
let's invoke the docker-compose ps command from a different Terminal to list
the containers associated with the example docker-compose project:

 $ sudo docker-compose ps
 Name Command
 State Ports
 --

 example_redis_1 /entrypoint.sh redis-server
 Up 6379/tcp
 example_web_1 node /myapp/example.js
 Up 0.0.0.0:8080->80/tcp

Evidently, the two example_redis_1 and example_web_1 containers are up and
running. The container name is prefixed with example_, which is the docker-
compose project name.

Explore the functionality of our own request/response web application on a6.
different Terminal of the Docker host, as illustrated here:

 $ curl http://localhost:8080
 Welcome to Docker-Compose helper
 Enter the docker-compose command in the URL for help
 $ curl http://localhost:8080/build
 Build or rebuild services
 $ curl http://localhost:8080/something
 Command: something not supported

Here, we are directly connecting to the web service using
http://localhost:8080 because the web service is bound to the Docker
host on port 8080. You can also access the service externally using the
Docker host IP address and port 8080 (https://<docker host
ip>:8080), provided the IP address and the port is reachable from the
external system.

Orchestrating Containers

[187]

Cool, isn't it? With very minimal effort and with the help of the docker-compose.yml file,
we are able to compose two different services together and offer a composite service.

Summary
This chapter was incorporated into this book in order to provide you with all the probing
and prescribing details on seamlessly orchestrating multiple containers. We extensively
discussed the need for container orchestration and the enabling tools to simplify and
streamline the increasingly complicated process of container orchestration. In order to
substantiate how orchestration is handy and helpful in crafting enterprise-class containers
and to illustrate the orchestration process, we took the widely followed way of explaining
the whole gamut through a simple example. We developed a web application and
contained it within a standard container. Similarly, we took a database container, which is a
backend for the frontend web application. The database gets executed inside another
container. We saw how to make the web application container aware of the database, using
different technologies through the container-linkage feature of the Docker Engine. We used
an open-source tool (docker-compose) for this purpose.

In the next chapter, we will discuss how Docker facilitates software testing, especially
integration testing with a few pragmatic examples.

9
Testing with Docker

Undoubtedly, the trait of testing has been at the forefront of the software engineering
discipline. The deep and decisive presence of software in every kind of tangible object in
our daily environments these days in order to have plenty of smart, connected, and
digitized assets is widely accepted. Also, with an increased focus on distributed and
synchronized software, the complexity of the software design, development, testing and
debugging, deployment, and delivery are continuously on the rise. Various means and
mechanisms are unearthed to simplify and streamline the much-needed automation of
software building and the authentication of software reliability, resiliency, and
sustainability. Docker is emerging as an extremely flexible tool to test a wide variety of
software applications. In this chapter, we will discuss how to effectively leverage the
noteworthy advancements of Docker for software testing and its unique advantages in
accelerating and augmenting testing automation.

The following topics are discussed in this chapter:

A brief overview of TDD
Testing your code inside Docker
Integrating the Docker testing process into Jenkins

Docker containers are currently being leveraged to create development and testing
environments that are the exact replicas of the production environment. Containers require
less overhead when compared with virtual machines, which have been the primary
environments for development, staging, and deployment environments. Let's start with an
overview of Test-driven Development (TDD) of the next generation software and how
Docker-inspired containerization becomes handy in simplifying the TDD process.

Testing with Docker

[189]

A brief overview of TDD
The long and arduous journey of software development has taken many twists and turns in
the past decades, and one of the prominent software engineering technique is nonetheless
TDD.

For more details and documents on TDD refer
to http://agiledata.org/essays/tdd.html.

In a nutshell, TDD is a software development practice in which the development cycle
begins with writing a test case that will fail, then writes the actual software to make the test
pass, and continues to refactor and repeat the cycle till the software reaches the acceptable
level. This process is depicted in the following diagram:

Testing your code inside Docker
In this section, we will take you through a journey in which we will show you how TDD is
done using stubs and how Docker can come in handy when developing software in the
deployment equivalent system. For this purpose, we take a web application use case that
has a feature to track the visit count of each of its users. For this example, we use Python as
the implementation language and redis as the key-value pair database to store the users
hit count. Besides, to showcase the testing capability of Docker, we limit our
implementation to just two functions—hit and getHit.

Testing with Docker

[190]

All the examples in this chapter use Python 3 as the runtime environment.
The Ubuntu 16.04 installation comes with Python 3 by default. If you don't
have Python 3 installed on your system, refer to the respective manual to
install Python 3.

As per the TDD practice, we start by adding unit test cases for the hit and getHit
functions, as depicted in the following code snippet. Here, the test file is named
test_hitcount.py:

import unittest
import hitcount

class HitCountTest (unittest.TestCase):
 def testOneHit(self):
 # increase the hit count for user user1
 hitcount.hit("user1")
 # ensure that the hit count for user1 is just 1
 self.assertEqual(b'1', hitcount.getHit("user1"))

if __name__ == '__main__':
 unittest.main()

This example is also available at
https://github.com/thedocker/testing/tree/master/src.

Here, in the first line, we are importing the unittest Python module that provides the
necessary framework and functionality to run the unit test and generate a detailed report on
the test execution. In the second line, we are importing the hitcount Python module,
where we are going to implement the hit count functionality. Then, we will continue to add
the test code that will test the hitcount module's functionality.

Now, run the test suite using the unit test framework of Python, as follows:

$ python3 -m unittest

The following is the output generated by the unit test framework:

E
==
ERROR: test_hitcount (unittest.loader.ModuleImportFailure)
--
Traceback (most recent call last):
...OUTPUT TRUNCATED ...
ImportError: No module named 'hitcount'

--

Testing with Docker

[191]

Ran 1 test in 0.001s

FAILED (errors=1)

As expected, the test failed with the ImportError: No module named 'hitcount' error
message because we had not even created the file and hence, it could not import the
hitcount module.

Now, create a file with the hitcount.py name in the same directory as
test_hitcount.py:

$ touch hitcount.py

Continue to run the unit test suite:

$ python3 -m unittest

The following is the output generated by the unit test framework:

E
==
ERROR: testOneHit (test_hitcount.HitCountTest)
--
Traceback (most recent call last):
 File "/home/user/test_hitcount.py", line 10, in testOneHit
 hitcount.hit("peter")
AttributeError: 'module' object has no attribute 'hit'

--

Ran 1 test in 0.001s

FAILED (errors=1)

Again, the test suite failed like earlier, but with a different error message
AttributeError: 'module' object has no attribute 'hit'. We are getting this
error because we have not implemented the hit function yet.

Let's proceed to implement the hit and getHit functions in hitcount.py,  as shown here:

import redis
connect to redis server
r = redis.StrictRedis(host='0.0.0.0', port=6379, db=0)

increase the hit count for the usr
def hit(usr):
 r.incr(usr)

Testing with Docker

[192]

get the hit count for the usr
def getHit(usr):
 return (r.get(usr))

This example is also available on GitHub
at https://github.com/thedocker/testing/tree/master/src.

To continue with this example, you must have the Python 3 compatible
version of package installer (pip3).

The following command is used to install pip3:

$ wget -qO- https://bootstrap.pypa.io/get-pip.py | sudo python3 -

In the first line of the preceding program, we are importing the redis driver, which is the
connectivity driver of the redis database. In the following line, we are connecting to the
redis database, and then we will continue to implement the hit and getHit function.

The redis driver is an optional Python module, so let's proceed to install the redis driver
using the pip installer, which is illustrated as follows:

$ sudo pip3 install redis

Our unittest module will still fail even after installing the redis driver because we are
not running a redis database server yet. So, we can either run a redis database server to
successfully complete our unit testing or take the traditional TDD approach of mocking the
redis driver. Mocking is a testing approach wherein complex behavior is substituted by
predefined or simulated behavior. In our example, to mock the redis driver, we are going
to leverage a third-party Python package called mockredis. This mock package is available
at https://github.com/locationlabs/mockredis and the pip installer name is
mockredispy. Let's install this mock using the pip installer:

$ sudo pip3 install mockredispy

Testing with Docker

[193]

Having installed mockredispy, the redis mock, let's refactor our test code
 test_hitcount.py (which we had written earlier) to use the simulated redis
functionality provided by the mockredis module. This is accomplished by the patch
method provided by the unittest.mock mocking framework, as shown in the following
code:

import unittest
from unittest.mock import patch

Mock for redis
import mockredis
import hitcount

class HitCountTest(unittest.TestCase):

 @patch('hitcount.r',
 mockredis.mock_strict_redis_client(host='0.0.0.0',
 port=6379, db=0))
 def testOneHit(self):
 # increase the hit count for user user1
 hitcount.hit("user1")
 # ensure that the hit count for user1 is just 1
 self.assertEqual(b'1', hitcount.getHit("user1"))

if __name__ == '__main__':
 unittest.main()

This example is also available on GitHub at
https://github.com/thedocker/testing/tree/master/src.

Now, run the test suite again:

$ python3 -m unittest
.
--
Ran 1 test in 0.000s

OK

Finally, as we can see in the preceding output, we successfully implemented our visitors
count functionality through the test, code, and refactor cycle.

Testing with Docker

[194]

Running the test inside a container
In the previous section, we walked you through the complete cycle of TDD, in which we
installed additional Python packages to complete our development. However, in the real
world, one might work on multiple projects that might have conflicting libraries and hence,
there is a need for the isolation of runtime environments. Before the advent of Docker
technology, the Python community used to leverage the Virtualenv tool to isolate the
Python runtime environment. Docker takes this isolation a step further by packaging the
OS, the Python toolchain, and the runtime environment. This type of isolation gives a lot of
flexibility to the development community to use appropriate software versions and libraries
as per the project needs.

Here is the step-by-step procedure to package the test and visitor count implementation of
the previous section to a Docker container and perform the test inside the container:

Craft a Dockerfile to build an image with the python3 runtime, the redis and1.
mockredispy packages, and both the test_hitcount.py test file and the
visitors count implementation hitcount.py, and finally, launch the unit test:

 ###
 # Dockerfile to build the unittest container
 ###

 # Base image is python
 FROM python:latest

 # Author: Dr. Peter
 MAINTAINER Dr. Peter <peterindia@gmail.com>

 # Install redis driver for python and the redis mock
 RUN pip install redis && pip install mockredispy

 # Copy the test and source to the Docker image
 ADD src/ /src/

 # Change the working directory to /src/
 WORKDIR /src/

 # Make unittest as the default execution
 ENTRYPOINT python3 -m unittest

This example is also available on GitHub at h t t p s ://g i t h u b . c o m /t h e d o c k e r /t e s

t i n g /t r e e /m a s t e r /s r c .

Testing with Docker

[195]

Now create a directory called src, where we crafted our Dockerfile. Move the2.
test_hitcount.py and hitcount.py files to the newly created src directory.
Build the hit_unittest Docker image using the docker build subcommand:3.

 $ sudo docker build -t hit_unittest .
 Sending build context to Docker daemon 11.78 kB
 Sending build context to Docker daemon
 Step 0 : FROM python:latest
 ---> 32b9d937b993
 Step 1 : MAINTAINER Dr. Peter <peterindia@gmail.com>
 ---> Using cache
 ---> bf40ee5f5563
 Step 2 : RUN pip install redis && pip install mockredispy
 ---> Using cache
 ---> a55f3bdb62b3
 Step 3 : ADD src/ /src/
 ---> 526e13dbf4c3
 Removing intermediate container a6d89cbce053
 Step 4 : WORKDIR /src/
 ---> Running in 5c180e180a93
 ---> 53d3f4e68f6b
 Removing intermediate container 5c180e180a93
 Step 5 : ENTRYPOINT python3 -m unittest
 ---> Running in 74d81f4fe817
 ---> 063bfe92eae0
 Removing intermediate container 74d81f4fe817
 Successfully built 063bfe92eae0

Now that we have successfully built the image, let's launch our container with4.
the unit testing bundle using the docker run subcommand, as illustrated here:

 $ sudo docker run --rm -it hit_unittest .

 Ran 1 test in 0.001s

 OK

Apparently, the unit test ran successfully with no errors because we already
packaged the tested code.

In this approach, for every change, the Docker image is built and then the container is
launched to complete the test.

Testing with Docker

[196]

Using a Docker container as a runtime environment
In the previous section, we built a Docker image to perform the testing. Particularly, in the
TDD practice, the unit test cases and the code go through multiple changes. Consequently,
the Docker image needs to be built over and over again, which is a daunting task. In this
section, we will see an alternative approach in which the Docker container is built with a
runtime environment, the development directory is mounted as a volume, and the test is
performed inside the container.

During this TDD cycle, if an additional library or update to the existing library is required,
then the container will be updated with the required libraries and the updated container
will be committed as a new image. This approach gives the isolation and flexibility that any
developer would dream of because the runtime and its dependency live within the
container, and any misconfigured runtime environment can be discarded and a new
runtime environment can be built from a previously working image. This also helps to
preserve the sanity of the Docker host from the installation and uninstallation of libraries.

The following example is a step-by-step instruction on how to use the Docker container as a
non-polluting yet very powerful runtime environment:

We begin with launching the Python runtime interactive container, using the1.
docker run subcommand:

 $ sudo docker run -it \
 -v /home/peter/src/hitcount:/src \
 python:latest /bin/bash

Here, in this example, the /home/peter/src/hitcount Docker host directory is
earmarked as the placeholder for the source code and test files. This directory is
mounted in the container as /src.

Now, on another Terminal of the Docker host, copy both the test_hitcount.py2.
test file and the hitcount.py visitors count implementation to the
/home/peter/src/hitcount directory.
Switch to the Python runtime interactive container Terminal, change the current3.
working directory to /src, and run the unit test:

 root@a8219ac7ed8e:~# cd /src
 root@a8219ac7ed8e:/src# python3 -m unittest
 E
 ===
 =================
 ERROR: test_hitcount
 (unittest.loader.ModuleImportFailure)

Testing with Docker

[197]

 . . . TRUNCATED OUTPUT . . .
 File "/src/test_hitcount.py", line 4, in <module>
 import mockredis
 ImportError: No module named 'mockredis'

 Ran 1 test in 0.001s

 FAILED (errors=1)

Evidently, the test failed because it could not find the mockredis Python library.

Proceed to install the mockredispy pip package because the previous step failed4.
as it could not find the mockredis library in the runtime environment:

 root@a8219ac7ed8e:/src# pip install mockredispy

Rerun the Python unit test:5.

 root@a8219ac7ed8e:/src# python3 -m unittest
 E
 ===
 ============
 ERROR: test_hitcount
 (unittest.loader.ModuleImportFailure)
 . . . TRUNCATED OUTPUT . . .
 File "/src/hitcount.py", line 1, in <module>
 import redis
 ImportError: No module named 'redis'

 Ran 1 test in 0.001s

 FAILED (errors=1)

Again, the test failed because the redis driver is not yet installed.

Continue to install the redis driver using the pip installer, as shown here:7.

 root@a8219ac7ed8e:/src# pip install redis

Having successfully installed the redis driver, let's once again run the unit test:8.

 root@a8219ac7ed8e:/src# python3 -m unittest
 .

 --

Testing with Docker

[198]

 Ran 1 test in 0.000s

 OK

Apparently, this time the unit test passed with no warnings or error messages.

Now we have a runtime environment that is good enough to run our test cases. It9.
is better to commit these changes to a Docker image for reuse, using the docker
commit subcommand:

 $ sudo docker commit a8219ac7ed8e \
 python_rediswithmock
fcf27247ff5bb240a935ec4ba1bddbd8c90cd79cba66e52b21e1b48f984c7db2

From now on, we can use the python_rediswithmock image to launch new10.
containers for our TDD.

In this section, we vividly illustrated the approach on how to use the Docker container as a
testing environment, and also at the same time, preserve the sanity and sanctity of the
Docker host by isolating and limiting the runtime dependency within the container.

Integrating Docker testing into Jenkins
In the previous section, we laid out a stimulating foundation on software testing, how to
leverage the Docker technology for the software testing, and the unique benefits of the
container technology during the testing phase. In this section, we will introduce you to the
steps required to prepare the Jenkins environment for testing with Docker, and then,
demonstrate how Jenkins can be extended to integrate and automate testing with Docker,
using the well-known hit count use case.

Preparing the Jenkins environment
In this section, we will take you through the steps to install Jenkins, the GitHub plugin for
Jenkins and git, and the revision control tool. The steps are as follows:

We begin with adding the Jenkins' trusted PGP public key:1.

 $ wget -q -O - \
 https://jenkins-ci.org/debian/jenkins-ci.org.key | \
 sudo apt-key add -

Testing with Docker

[199]

Here, we are using wget to download the PGP public key, and then we add it to
the list of trusted keys using the apt-key tool. Since Ubuntu and Debian share
the same software packaging, Jenkins provides a single common package for both
Ubuntu and Debian.

Add the Debian package location to the apt package source list, as follows:2.

 $ sudo sh -c \
 'echo deb http://pkg.jenkins-ci.org/debian binary/ > \
 /etc/apt/sources.list.d/jenkins.list'

After adding the package source, continue to run the apt-get command update3.
option to resynchronize the package index from the sources:

 $ sudo apt-get update

Now, install Jenkins using the apt-get command install option, as4.
demonstrated here:

 $ sudo apt-get install jenkins

Finally, activate the Jenkins service using the service command:5.

 $ sudo service jenkins start

The Jenkins service can be accessed through any web browser by specifying the IP
address (54.86.87.243) of the system in which Jenkins is installed. The default
port number for Jenkins is 8080. The latest Jenkins 2.62 is already installed. The
following screenshot is the entry page or dashboard of Jenkins:

Testing with Docker

[200]

Provide the password from the file and login. This user is the admin:6.

 $ sudo cat \
 /var/lib/jenkins/secrets/initialAdminPassword
 b7ed7cfbde1443819455ab1502a19de2

This will take you to the Customize Jenkins page, as shown in the following7.
screenshot:

Select Install suggested plugins on the left-hand side of the screen, which will8.
take us to the installation page.

Testing with Docker

[201]

On the Create First Admin User page, select Continue as admin:9.

This will take us to the Jenkins is ready! page, as shown in the following
screenshot:

Testing with Docker

[202]

Now, clicking on the Start using Jenkins button will take you to the Welcome to10.
Jenkins! page:

Ensure that the git package is installed, otherwise install the git package using11.
the apt-get command:

 $ sudo apt-get install git

So far, we have been running the Docker client using the sudo command, but12.
unfortunately, we could not invoke sudo inside Jenkins because sometimes it
prompts for a password. To overcome the sudo password prompt issue, we can
make use of the Docker group, wherein any user who is part of the Docker group
can invoke the Docker client without using the sudo command. Jenkins
installation always sets up a user and group called jenkins and runs the Jenkins
server using that user and group. So, we just need to add the jenkins user to the
Docker group to get the Docker client working without the sudo command:

 $ sudo gpasswd -a jenkins docker
 Adding user jenkins to group docker

Restart the Jenkins service for the group change to take effect using the following13.
command:

 $ sudo service jenkins restart
 * Restarting Jenkins Continuous Integration Server
 jenkins [OK]

Testing with Docker

[203]

We have set up a Jenkins environment that is now capable of automatically pulling the
latest source code from the http://github.com repository, packaging it as a Docker image,
and executing the prescribed test scenarios.

You are also encouraged to run Jenkins as a Docker container from the official Jenkins
Docker image at h t t p s ://g i t h u b . c o m /j e n k i n s c i /d o c k e r . This will be very good exercise
also to validate your Docker container concepts from previous chapters.

Automating the Docker testing process
In this section, we will explore how to automate testing using Jenkins and Docker. As
mentioned earlier, we are going to use GitHub as our repository. We have already
uploaded the Dockerfile, test_hitcount.py, and hitcount.py files of our previous
example to GitHub at https://github.com/thedocker/testing, which we are to use in the
ensuing example. However, we strongly encourage you to set up your own repository at
h t t p ://g i t h u b . c o m , using the fork option that you can find at h t t p s ://g i t h u b . c o m /t h e d o

c k e r /t e s t i n g , and substitute this address wherever applicable in the ensuing example.

The following are the detailed steps to automate Docker testing:

Configure Jenkins to trigger a build when a file is modified in the GitHub repository, which
is illustrated in the following substeps:

Connect to the Jenkins server again.1.
Select create new jobs.2.

Testing with Docker

[204]

As shown in the following screenshot, give a name to the project (for example,3.
Docker-Testing), and select Freestyle project:

Testing with Docker

[205]

As shown in the next screenshot, select the Git radio button under Source Code4.
Management, and specify the GitHub repository URL in the Repository URL text
field:

Select Poll SCM under Build Triggers to schedule GitHub polling for every5.
15-minute interval. Type the following line of code H/15 * * * * in the
Schedule textbox, as shown in the following screenshot. For testing purposes,
you can reduce the polling interval:

Testing with Docker

[206]

Scroll down the screen a little further and click on the Add build step button6.
under Build. In the drop-down list, select Execute shell and type in the text, as
shown in the following screenshot:

Finally, save the configuration by clicking on the Save button.7.
Go back to the Jenkins dashboard, and you can find your test listed on the8.
dashboard:

Testing with Docker

[207]

You can either wait for the Jenkins schedule to kick-start the build or you can9.
click on the clock icon on the right-hand side of the screen to kick-start the build
immediately. As soon as the build is done, the dashboard is updated with the
build status as a success or failure and the build number:

If you hover the mouse closer to the build number, you will get a drop-down10.
button with options, such as Changes and Console Output, as shown in the
following screenshot:

The Console Output option will show the details highlighted for the build, as11.
follows:

 Started by user Vinod Singh
 Building in workspace
 /var/lib/jenkins/workspace/Docker-testing
 Cloning the remote Git repository
 Cloning repository

Testing with Docker

[208]

 https://github.com/thedocker/testing
 > git init \
 /var/lib/jenkins/workspace/Docker-testing \
 # timeout=10
 Fetching upstream changes from
 https://github.com/thedocker/testing
 > git --version # timeout=10
 Removing intermediate container 76a53284f1e3
 Successfully built d9e22d1d52c6
 + docker run --rm docker_testing_using_jenkins
 .
 --

 Ran 1 test in 0.000s

 OK
 Finished: SUCCESS

Now, let's test the failed case because of the wrong module12.
name, error_hitcount, which we deliberately introduced. Now, let's
experiment a negative scenario by deliberately introducing a bug in
test_hitcount.py and observe the effect on the Jenkins build. As we have
configured Jenkins, it faithfully polls the GitHub and kick-starts the build.

Apparently, the build failed as we expected:

As a final step, open Console Output of the failed build:13.

 Started by an SCM change
 Building in workspace
 /var/lib/jenkins/jobs/Docker-Testing/workspace
 . . . OUTPUT TRUNCATED . . .
 ImportError: No module named 'error_hitcount'

Testing with Docker

[209]

 Ran 1 test in 0.001s

 FAILED (errors=1)
 Build step 'Execute shell' marked build as failure
 Finished: FAILURE

Evidently, the test failed because of the wrong module name, error_hitcount,
which we deliberately introduced.

Cool, isn't it? We automated our testing using Jenkins and Docker. Besides, we are able to
experience the power of testing automation using Jenkins and Docker. In a large-scale
project, Jenkins and Docker can be combined together to automate the complete unit testing
needs, and thus, to automatically capture any defects and deficiencies introduced by any
developers.

Summary
The potential benefits of containerization are being discovered across the breadth and the
length of software engineering. Previously, testing sophisticated software systems involved
a number of expensive and hard-to-manage server modules and clusters. Considering the
costs and complexities involved, most of the software testing is accomplished using
mocking procedures and stubs. All of this is going to end for good with the maturity of the
Docker technology. The openness and flexibility of Docker enable it to work seamlessly
with other technologies to substantially reduce the testing time and complexity.

For a long time, the leading ways of testing software systems included mocking,
dependency, injection, and so on. Usually, these mandate creating many sophisticated
abstractions in the code. The current practice for developing and running test cases against
an application is actually done on stubs rather than on the full application. This means that,
with a containerized workflow, it is very much possible to test against real application
containers with all the dependencies. The contributions of the Docker paradigm, especially
for the testing phenomenon and phase are therefore being carefully expounded and
recorded in the recent past. Precisely speaking, the field of software engineering is moving
towards smarter and sunnier days with all the innovations in the Docker space.

Testing with Docker

[210]

In this chapter, we clearly expounded and explained a powerful testing framework for
integrated applications using the Docker-inspired containerization paradigm. Increasingly,
for the agile world, the proven and potential TDD method is being insisted as an efficient
software building and sustenance methodology. This chapter has utilized the Python unit
test framework to illustrate how the TDD methodology is a pioneering tool for software
engineering. The unit test framework is tweaked to be efficiently and elegantly
containerized, and the Docker container is seamlessly integrated with Jenkins, which is a
modern day deployment tool for continuous delivery, and is part and parcel of the agile
programming world, as described in this chapter. The Docker container source code is pre-
checked before it enters into the GitHub code repository. The Jenkins tool downloads the
code from GitHub and runs the test inside a container. In the next chapter, we will dive
deep into and describe the theoretical aspects of the process isolation through the container
technology and various debugging tools and techniques.

10
Debugging Containers

Debugging has been an artistic component in the field of software engineering. All kinds of
software building blocks individually, as well as collectively, need to go through a stream of
deeper and decisive investigations by software development and testing professionals to
ensure the security and safety of the resulting software applications. As Docker containers
are said to be key runtime environments for next generation mission-critical software
workloads, it is pertinent and paramount for containers, crafters, and composers to embark
on a systematic and sagacious verification and validation of containers.

This chapter has been dedicatedly written to enable technical guys who have all the
accurate and relevant information to meticulously debug both the applications running
inside containers and the containers themselves. In this chapter, we will also look at the
theoretical aspects of process isolation for processes running as containers. A Docker
container runs at a user-level process on host machines and typically has the same isolation
level as provided by the operating system. With the latest Docker releases, many debugging
tools are available which can be efficiently used to debug your applications. We will also
cover the primary Docker debugging tools, such as docker exec, stats, ps, top, events,
and logs. The current version of Docker is written in Go and it takes advantage of several
features of the Linux kernel to deliver its functionality.

The list of topics that will be covered in this chapter is as follows:

Process-level isolation for Docker containers
Debugging a Dockerfile
Debugging a containerized application

All the commands in this chapter are tested on an Ubuntu environment
and if you are running them on a local Mac environment, the results
would differ.

Debugging Containers

[212]

After installing the Docker Engine on your host machine, the Docker daemon can be started
with the -D debug option:

$ docker -D login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username (vinoddandy):

This -D debug flag can be enabled to the Docker configuration file
(/etc/default/docker) also in the debug mode:

DOCKER_OPTS="-D"

After saving and closing the configuration file, restart the Docker daemon.

Process-level isolation for Docker
containers
In the virtualization paradigm, the hypervisor emulates computing resources and provides
a virtualized environment called a VM to install the operating system and applications on
top of it. Whereas, in the case of the container paradigm, a single system (bare metal or VM)
is effectively partitioned to run multiple services simultaneously without interfering with
each other. These services must be isolated from each other in order to prevent them from
stepping on each other's resources or dependency conflict (also known as dependency hell).
The Docker container technology essentially achieves process-level isolation by leveraging
the Linux kernel constructs, such as namespaces and cgroups, particularly, the namespaces.
The Linux kernel provides the following five powerful namespace levers for isolating the
global system resources from each other. These are the Interprocess Communication (IPC)
namespaces used to isolate the IPC resources:

network: This namespace is used to isolate networking resources such as the
network devices, network stack, and port number
mount: This namespace isolates the filesystem mount points
PID: This namespace isolates the process identification number
user: This namespace is used to isolate the user ID and group ID
UTS: This namespace is used to isolate the hostname and the NIS  domain name

These namespaces add an additional level of complexity when we have to debug the
services running inside the containers, which you will learn more about in detail in the next
section.

Debugging Containers

[213]

In this section, we will discuss how the Docker Engine provides process-level isolation by
leveraging the Linux namespaces through a series of practical examples, and one of them is
listed here:

Start by launching an Ubuntu container in an interactive mode using the docker1.
run subcommand, as shown here:

 $ sudo docker run -it --rm ubuntu /bin/bash
 root@93f5d72c2f21:/#

Proceed to find the process ID of the preceding 93f5d72c2f21 container, using2.
the docker inspect subcommand in a different Terminal:

 $ sudo docker inspect \
 --format "{{ .State.Pid }}" 93f5d72c2f21
 2543

Apparently, from the preceding output, the process ID of the container
93f5d72c2f21 is 2543.

Having got the process ID of the container, let's continue to see how the process3.
associated with the container looks in the Docker host, using the ps command:

 $ ps -fp 2543
 UID PID PPID C STIME TTY TIME
 CMD
 root 2543 6810 0 13:46 pts/7 00:00:00
 /bin/bash

Amazing, isn't it? We launched a container with /bin/bash as its command, and
we have the /bin/bash process in the Docker host as well.

Let's go one step further and display the /proc/2543/environ file in the Docker4.
host using the cat command:

 $ sudo cat -v /proc/2543/environ
 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin
/bin^@HOSTNAME=93f5d72c2f21^@TERM=xterm^@HOME=/root^@$

In the preceding output, HOSTNAME=93f5d72c2f21 stands out from the other
environment variables because 93f5d72c2f21 is the container ID, as well as the
hostname of the container, which we launched previously.

Debugging Containers

[214]

Now, let's get back to the Terminal, where we are running our interactive5.
container 93f5d72c2f21, and list all the processes running inside this container
using the ps command:

 root@93f5d72c2f21:/# ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 18:46 ? 00:00:00 /bin/bash
 root 15 1 0 19:30 ? 00:00:00 ps -ef

Surprising, isn't it? Inside the container, the process ID of the /bin/bash process is 1,
whereas outside the container, in the Docker host, the process ID is 2543. Besides, the
Parent Process ID (PPID) is 0 (zero).

In the Linux world, every system has just one root process with the PID 1 and PPID 0,
which is the root of the complete process tree of that system. The Docker framework
cleverly leverages the Linux PID namespace to spin a completely new process tree; thus, the
processes running inside a container have no access to the parent process of the Docker
host. However, the Docker host has a complete view of the child PID namespace spun by
the Docker Engine.

The network namespace ensures that all containers have independent network interfaces on
the host machine. Also, each container has its own Loopback interface. Each container talks
to the outside world using its own network interface. You will be surprised to know that the
namespace not only has its own routing table, but also has its own iptables, chains, and
rules. The author of this chapter is running three containers on his host machine. Here, it is
natural to expect three network interfaces for each container. Let's run the docker ps
command:

$ sudo docker ps
41668be6e513 docker-apache2:latest "/bin/sh -c 'apachec
069e73d4f63c nginx:latest "nginx -g '
871da6a6cf43 ubuntu "/bin/bash"

So, there are three interfaces, one for each container. Let's get their details by running the
following command:

$ ifconfig
veth2d99bd3 Link encap:EthernetHWaddr 42:b2:cc:a5:d8:f3
inet6addr: fe80::40b2:ccff:fea5:d8f3/64 Scope:Link
 UP BROADCAST RUNNING MTU:9001 Metric:1
veth422c684 Link encap:EthernetHWaddr 02:84:ab:68:42:bf
inet6addr: fe80::84:abff:fe68:42bf/64 Scope:Link
 UP BROADCAST RUNNING MTU:9001 Metric:1
vethc359aec Link encap:EthernetHWaddr 06:be:35:47:0a:c4

Debugging Containers

[215]

inet6addr: fe80::4be:35ff:fe47:ac4/64 Scope:Link
 UP BROADCAST RUNNING MTU:9001 Metric:1

The mount namespace ensures that the mounted filesystem is accessible only to the
processes within the same namespace. The container A cannot see the mount points of the
container B. If you want to check your mount points, you need to first log in to your
container using the exec command (described in the next section), and then go to
/proc/mounts:

root@871da6a6cf43:/# cat /proc/mounts
rootfs / rootfsrw 0 0/dev/mapper/docker-202:1-149807
871da6a6cf4320f625d5c96cc24f657b7b231fe89774e09fc771b3684bf405fb / ext4
rw,relatime,discard,stripe=16,data=ordered 0 0 proc /procproc
rw,nosuid,nodev,noexec,relatime 0 0

Let's run a container with a mount point that runs as the Storage Area Network (SAN) or
Network Attached Storage (NAS) device and access it by logging in to the container. This
is given to you as an exercise. I have implemented this in one of my projects at work.

There are other namespaces that these containers/processes can be isolated into, namely,
user, IPC, and UTS. The user namespace allows you to have root privileges within the
namespace without giving that particular access to processes outside the namespace.
Isolating a process with the IPC namespace gives it its own IPC resources, for example,
System V IPC and POSIX messages. The UTS namespace isolates the hostname of the
system.

Docker has implemented this namespace using the clone system call. On the host machine,
you can inspect the namespace created by Docker for the container (with PID 3728):

$ sudo ls /proc/3728/ns/
cgroup ipc mnt netpid user uts

In most industrial deployments of Docker, people are extensively using patched Linux
kernels to provide specific needs. Also, a few companies have patched their kernels to
attach arbitrary processes to the existing namespaces because they feel that this is the most
convenient and reliable way to deploy, control, and orchestrate containers.

Debugging Containers

[216]

Control groups
Linux containers rely on Control groups (cgroups), which not only track groups of
processes, but also expose metrics of the CPU, memory, and block I/O usage. You can access
these metrics and obtain network usage metrics as well. Cgroups are another important
component of Linux containers. Cgroups have been around for a while and were initially
merged into the Linux kernel code 2.6.24. They ensure that each Docker container will get a
fixed amount of memory, CPU, and disk I/O, so that any container will not able to bring the
host machine down at any point of time under any circumstances. Cgroups do not play a
role in preventing one container from being accessed, but they are essential to fend off some
Denial of Service (DoS) attacks.

On Ubuntu 16.04, a cgroup is implemented in the /sys/fs/cgroup path. The memory
information of Docker is available at the /sys/fs/cgroup/memory/docker/ path.

Similarly, the CPU details are made available in the /sys/fs/cgroup/cpu/docker/ path.

Let's find out the maximum limit of memory that can be consumed by the container
(41668be6e513e845150abd2dd95dd574591912a7fda947f6744a0bfdb5cd9a85).

For this, you can go to the cgroup memory path and check for the
memory.max_usage_in_bytes file:

/sys/fs/cgroup/memory/docker/41668be6e513e845150abd2dd95dd574591912a7  fda947
f6744a0bfdb5cd9a85

Execute the following command to see the contents:

$ cat memory.max_usage_in_bytes
13824000

So, by default, any container can use up to 13.18 MB memory only. Similarly, CPU
parameters can be found in the following path:

/sys/fs/cgroup/cpu/docker/41668be6e513e845150abd2dd95dd574591912a7fda  947f67
44a0bfdb5cd9a85

Traditionally, Docker runs only one process inside the containers. So typically, you have
seen people running three containers each for PHP, NGINX,  and MySQL. However, this is a
myth. You can run all your three processes inside a single container also.

Debugging Containers

[217]

Docker isolates many aspects of the underlying host from an application running in a
container without the root privileges. However, this separation is not as strong as that of
virtual machines, which run independent OS instances on top of a hypervisor without
sharing the kernel with the underlying OS. It's not a good idea to run applications with
different security profiles as containers on the same host, but there are security benefits to
encapsulate different applications into containerized applications that would otherwise run
directly on the same host.

Debugging a containerized application
Computer programs (software) sometimes fail to behave as expected. This is due to faulty
code or due to the environmental changes between the development, testing, and
deployment systems. Docker container technology eliminates the environmental issues
between development, testing, and deployment as much as possible by containerizing all
the application dependencies. Nonetheless, there could be still anomalies due to faulty code
or variations in the kernel behavior, which needs debugging. Debugging is one of the most
complex processes in the software engineering world and it becomes much more complex
in the container paradigm because of the isolation techniques. In this section, we are going
to learn a few tips and tricks to debug a containerized application using the tools native to
Docker, as well as the tools provided by external sources.

Initially, many people in the Docker community individually developed their own
debugging tools, but later Docker started supporting native tools, such as exec, top, logs,
and events. In this section, we will dive deep into the following Docker tools:

exec

ps

top

stats

events

logs

attach

We shall also consider debugging a Dockerfile.

Debugging Containers

[218]

The docker exec command
The docker exec command provides the much-needed help to users, who are deploying
their own web servers or have other applications running in the background. Now, it is not
necessary to log in to run the SSH daemon in the container.

First, create a Docker container:1.

 $ sudo docker run --name trainingapp \
 training/webapp:latest
 Unable to find image
 'training/webapp:latest' locally
 latest: Pulling from training/webapp
 9dd97ef58ce9: Pull complete
 a4c1b0cb7af7: Pull complete
 Digest:
sha256:06e9c1983bd6d5db5fba376ccd63bfa529e8d02f23d5079b8f74a616308fb11d
 Status: Downloaded newer image for
 training/webapp:latest

Next, run the docker ps -a command to get the container ID:2.

 $ sudo docker ps -a
 a245253db38b training/webapp:latest
 "python app.py"

Then, run the docker exec command to log in to the container:3.

 $ sudo docker exec -it a245253db38b bash
 root@a245253db38b:/opt/webapp#

Note that the docker exec command can only access the running containers, so4.
if the container stops functioning, then you need to restart the stopped container
in order to proceed. The docker exec command spawns a new process in the
target container using the Docker API and CLI. So if you run the ps -aef
command inside the target container, it looks like this:

 # ps -aef
 UID PID PPID C STIME TTY TIME
 CMD
 root 1 0 0 Nov 26 ? 00:00:53
 python app.py
 root 45 0 0 18:11 ? 00:00:00
 bash
 root 53 45 0 18:11 ? 00:00:00
 ps -aef

Debugging Containers

[219]

Here, python app.y is the application that is already running in the target container, and
the docker exec command has added the bash process inside the container. If you run
kill -9 pid(45), you will be automatically logged out of the container.

If you are an enthusiastic developer, and you want to enhance the exec functionality, you
can refer to https://github.com/chris-rock/docker-exec.

Using the docker exec command only for monitoring and diagnostic purposes is
recommended, and I personally believe in the concept of one process per container, which
is one of the best practices widely accentuated.

The docker ps command
The docker ps command, which is available inside the container, is used to see the status
of the process. This is similar to the standard ps command in the Linux environment and is
not a docker ps command that we run on the Docker  host machine.

This command runs inside the Docker container:

root@5562f2f29417:/# ps -s
UID PID PENDING BLOCKED IGNORED CAUGHT STAT TTY TIME
COMMAND
0 1 00000000 00010000 00380004 4b817efb Ss
? 0:00 /bin/bash
0 33 00000000 00000000 00000000 73d3fef9 R+ ? 0:00 ps -s
root@5562f2f29417:/# ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 4541 wait ? 00:00:00 bash
root@5562f2f29417:/# ps -t
PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 /bin/bash
 35 ? R+ 0:00 ps -t
root@5562f2f29417:/# ps -m
PID TTY TIME CMD
 1 ? 00:00:00 bash
 - - 00:00:00 -
 36 ? 00:00:00 ps
 - - 00:00:00 -
root@5562f2f29417:/# ps -a
PID TTY TIME CMD
 37 ? 00:00:00 ps

Use ps --help <simple|list|output|threads|misc|all> or ps --help
<s|l|o|t|m|a> for additional help text.

Debugging Containers

[220]

The docker top command
You can run the top command from the Docker host machine using the following
command:

docker top [OPTIONS] CONTAINER [ps OPTIONS]

This gives a list of the running processes of a container without logging in to the container,
as follows:

$ sudo docker top a245253db38b
UID PID PPID C
STIME TTY TIME CMD
root 5232 3585 0
Mar22 ? 00:00:53 python app.py
$ sudo docker top a245253db38b -aef
UID PID PPID C
STIME TTY TIME CMD
root 5232 3585 0
Mar22 ? 00:00:53 python app.py

The Docker top command provides information about the CPU, memory, and swap usage
if you run it inside a Docker container:

root@a245253db38b:/opt/webapp# top
top - 19:35:03 up 25 days, 15:50, 0 users, load average: 0.00, 0.01,
0.05
Tasks: 3 total, 1 running, 2 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si,
0.0%st
Mem: 1016292k total, 789812k used, 226480k free, 83280k buffers
Swap: 0k total, 0k used, 0k free, 521972k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM
TIME+ COMMAND
 1 root 20 0 44780 10m 1280 S 0.0 1.1 0:53.69 python
 62 root 20 0 18040 1944 1492 S 0.0 0.2 0:00.01 bash
 77 root 20 0 17208 1164 948 R 0.0 0.1 0:00.00 top

In case you get the error - TERM environment variable not set error while
running the top command inside the container, perform the following steps to resolve it:

Run the echo $TERM command. You will get the result as dumb. Then, run the following
command:

$ export TERM=dumb

This will resolve the error.

Debugging Containers

[221]

The docker stats command
The docker stats command provides you with the capability to view the memory, CPU,
and the network usage of a container from a Docker host machine, as illustrated here:

$ sudo docker stats a245253db38b
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
a245253db38b 0.02% 16.37 MiB/992.5 MiB 1.65%
3.818 KiB/2.43 KiB

You can run the stats command to also view the usage for multiple containers:

$ sudo docker stats a245253db38b f71b26cee2f1

Docker provides access to container statistics read only parameters. This streamlines the
CPU, memory, network IO, and block IO of containers. This helps you choose the resource
limits and also in profiling. The Docker stats utility provides you with these resource
usage details only for running containers.

The Docker events command
Docker containers will report the following real-time events: create, destroy, die,
export, kill, omm, pause, restart, start, stop, and unpause. The following are a few
examples that illustrate how to use these commands:

$ sudo docker pause a245253db38b
a245253db38b

$ sudo docker ps -a
a245253db38b training/webapp:latest "python app.py"
4 days ago Up 4 days (Paused) 0.0.0.0:5000->5000/tcp sad_sammet

$ sudo docker unpause a245253db38b
a245253db38b

$ sudo docker ps -a
a245253db38b training/webapp:latest "python app.py"
4 days ago Up 4 days 0.0.0.0:5000->5000/tcpsad_sammet

The Docker image will also report the untag and delete events.

Debugging Containers

[222]

The usage of multiple filters will be handled as an AND operation; for example,

--filter container= a245253db38b --filter event=start will display events for
the container a245253db38b and the event type is start.

Currently, the supported filters are container, event, and image.

The docker logs command
This command fetches the log of a container without logging in to the container. It batch-
retrieves logs present at the time of execution. These logs are the output of stdout and
stderr. The general usage is shown in docker logs [OPTIONS] CONTAINER.

The -follow option will continue to provide the output till the end, -t will provide the
timestamp, and --tail= <number of lines> will show the number of lines of the log
messages of your container:

$ sudo docker logs a245253db38b
* Running on http://0.0.0.0:5000/
172.17.42.1 - - [22/Mar/2015 06:04:23] "GET / HTTP/1.1" 200 -
172.17.42.1 - - [24/Mar/2015 13:43:32] "GET / HTTP/1.1" 200 -

$ sudo docker logs -t a245253db38b
2015-03-22T05:03:16.866547111Z * Running on http://0.0.0.0:5000/
2015-03-22T06:04:23.349691099Z 172.17.42.1 - - [22/Mar/2015 06:04:23] "GET
/ HTTP/1.1" 200 -
2015-03-24T13:43:32.754295010Z 172.17.42.1 - - [24/Mar/2015 13:43:32] "GET
/ HTTP/1.1" 200 -

We also used the docker logs utility in Chapter 2, Handling Docker Containers and
Chapter 6, Running Services in a Container, to view the logs of our containers.

The docker attach command
The docker attach command attaches the running container and it is very helpful when
you want to see what is written in stdout in real time:

$ sudo docker run -d --name=newtest alpine /bin/sh -c "while true; do sleep
2; df -h; done"
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
3690ec4760f9: Pull complete

Debugging Containers

[223]

Digest:
sha256:1354db23ff5478120c980eca1611a51c9f2b88b61f24283ee8200bf9a54f2e5c
1825927d488bef7328a26556cfd72a54adeb3dd7deafb35e317de31e60c25d67
$ sudo docker attach newtest
Filesystem Size Used Available Use% Mounted on
none 7.7G 3.2G 4.1G 44% /
tmpfs 496.2M 0 496.2M 0% /dev
tmpfs 496.2M 0 496.2M 0% /sys/fs/cgroup
/dev/xvda1 7.7G 3.2G 4.1G 44% /etc/resolv.conf
/dev/xvda1 7.7G 3.2G 4.1G 44% /etc/hostname
/dev/xvda1 7.7G 3.2G 4.1G 44% /etc/hosts
shm 64.0M 0 64.0M 0% /dev/shm
tmpfs 496.2M 0 496.2M 0% /proc/sched_debug
Filesystem Size Used Available Use% Mounted on
none 7.7G 3.2G 4.1G 44% /
tmpfs 496.2M 0 496.2M 0% /dev

By default, this command attaches stdin and proxies signals to the remote process. Options
are available to control both of these behaviors. To detach from the process, use the default
Ctrl + C sequence.

Debugging a Dockerfile
Sometimes creating a Dockerfile may not start with everything working. A
Dockerfile does not always build images and sometimes it does, but starting a container
would crash on startup.

Every instruction we set in the Dockerfile is going to be built as a separate, temporary
image for the other instruction to build itself on top of the previous instruction. The
following example explains this:

Create a Dockerfile using your favorite editor:1.

 FROM busybox
 RUN ls -lh
 CMD echo Hello world

Now, build the image by executing the following command:2.

 $ docker build .
 Sending build context to Docker daemon 2.048 kB
 Step 1 : FROM busybox
 latest: Pulling from library/busybox
 56bec22e3559: Pull complete
 Digest:

Debugging Containers

[224]

sha256:29f5d56d12684887bdfa50dcd29fc31eea4aaf4ad3bec43daf19026a7ce69912
 Status: Downloaded newer image for busybox:latest
 ---> e02e811dd08f
 Step 2 : RUN ls -lh
 ---> Running in 7b47d3c46cfa
 total 36
 drwxr-xr-x 2 root root 12.0K Oct 7 18:18 bin
 dr-xr-xr-x 130 root root 0 Nov 27 01:36 proc
 drwxr-xr-x 2 root root 4.0K Oct 7 18:18 root
 dr-xr-xr-x 13 root root 0 Nov 27 01:36 sys
 drwxrwxrwt 2 root root 4.0K Oct 7 18:18 tmp
 ---> ca5bea5887d6
 Removing intermediate container 7b47d3c46cfa
 Step 3 : CMD echo Hello world
 ---> Running in 490ecc3d10a9
 ---> 490d1c3eb782
 Removing intermediate container 490ecc3d10a9
 Successfully built 490d1c3eb782

 $

Notice the ---> Running in 7b47d3c46cfa line. 7b47d3c46cfa is a valid image and
can be used to retry the failed instruction and see what's happening

To debug this image, we need to create a container and then log in to analyze the error.
Debugging is a process of analyzing what's going on and it's different for every situation,
but usually, the way we start debugging is by trying to manually make the instruction that
fails work manually and understand the error. When I get the instruction to work, I usually
exit the container, update my Dockerfile, and repeat the process until I have something
working.

Debugging Containers

[225]

Summary
In this chapter, you have seen the isolation of containers using the Linux container
technology, such as LXC and now Libcontainer. Libcontainer is Docker's own
implementation in the Go programming language to access the kernel namespace and
cgroups. This namespace is used for process-level isolation, while cgroups are used for
restricting the resource usage of running containers. Since the containers run as
independent processes directly over the Linux kernel, the Generally Available (GA)
debugging tools are not fit enough to work inside the containers to debug the containerized
processes. Docker now provides you with a rich set of tools to effectively debug the
container as well as processes inside the container itself. The docker exec command will
allow you to log in to the container without running an SSH daemon in the container. You
have seen the details of each debugging tool in this chapter.

The docker stats command provides information about the container's memory and
CPU usage. The docker events command reports the events, such as create, destroy, and
kill. Similarly, the docker logs command fetches the logs from the container without
logging in to the container.

As a next step, you can try the latest Microsoft Visual Studio Tools for Docker. It provides a
consistent way to develop and validate your application in the Linux Docker container. For
details, you can refer to h t t p s ://d o c s . m i c r o s o f t . c o m /e n - u s /a z u r e /v s - a z u r e - t o o l s - d o

c k e r - e d i t - a n d - r e f r e s h .

Also, if you would like to debug the Node.js application live running in IDE (Visual Studio
Code), try this blog: h t t p s ://b l o g . d o c k e r . c o m /2016/07/l i v e - d e b u g g i n g - d o c k e r /.

The next chapter expounds the plausible security threats of Docker containers and how they
can be subdued with a variety of security approaches, automated tools, best practices, key
guidelines, and metrics. We will discuss the security of containers versus virtual machines
with Docker's adaptability of third-party security tools and practices.

11
Securing Docker Containers

So far, we have talked a lot about the fast-evolving Docker technology in this book. It is not
a nice and neat finish if the Docker-specific security issues and solution approaches are not
articulated in detail to you. Hence, this chapter is specially crafted and incorporated into
this book in order to explain all about the security challenges of Docker-inspired
containerization. We also wanted to throw more light on how the lingering security
concerns are being addressed through a host of pioneering technologies, high-quality
algorithms, enabling tools, and best practices. In this chapter, we will deal with the
following crucial topics in detail:

Are the Docker containers secure?
The security features of containers
The emerging security-enabling approaches
The best practices for ensuring container security

The security scenario in the containerization
domain
Ensuring unbreakable and impenetrable security for any IT systems and business services
has been one of the prime needs and the predominant challenges in the IT field for decades
now. Brilliant minds can identify and exploit all kinds of security holes and flaws (some of
them are being carelessly and unknowingly introduced at the system conceptualization and
concretization stages). This loophole ultimately brings innumerable breaches and chaos
during IT service delivery. Sometimes, systems are even becoming unavailable for
consumers and clients.

Securing Docker Containers

[227]

Security experts and engineers, on the other hand, try out every kind of trick and technique
at their disposal in order to stop hackers in their evil journey. However, it has not been an
outright victory so far. Here and there, there are some noteworthy intrusions from
unknown sources resulting in highly disconcerting IT slowdowns and sometimes
breakdowns. Organizations and governments across the globe are, therefore, investing
heavily their talents, time, and treasures in security research endeavors in order to
completely decimate all the security and safety-related incidents and accidents. There are
many security-specific product vendors and managed security service providers aiming to
minimize the irreparable and indescribable consequences of security threats and
vulnerabilities on IT systems. Precisely speaking, for any existing and emerging technology,
security has been the most crucial and critical aspect. The point to be noted here is that
enterprise and cloud IT teams can't be carefree and complacent in fulfilling the security
needs.

Docker-enabled containerization represents the next logical step on the memorable and
indomitable journey from physical, underutilized, closed, monolithic, and single-tenanted
IT resources to supple, open, affordable, automated, shared, service-oriented, optimally
utilized, and virtual IT resources. Precisely speaking, we are tending toward software-
defined and containerized cloud environments in order to reap a bunch of widely
articulated business, technical, and user benefits. As accentuated several times in this book,
Docker containers typically comprise a filesystem, network stack, process space, and
everything else needed to run an application anywhere. This means that each Docker
container includes the designated application and all its dependencies to be shipped,
hosted, and executed in an independent manner. This widely celebrated abstraction,
however, is prone to fresh and advanced security attacks, vulnerabilities, and holes.
Systems can be made inaccessible, datasets can be breached, services can be stopped, and so
on.

Precisely speaking, the raging Docker technology promises to drastically transform the way
worldwide enterprises develop, deploy, and manage critical software applications.
However, containers are no panacea. The same challenges we face while deploying and
delivering an application on hybrid IT environments get replicated in containers. This
chapter pinpoints the proven approaches for mitigating the containerization-induced and
inspired security issues. As cloud environments are extensively containerized, the
unbreakable and impenetrable containers ultimately vouch for safe, secure, and smart cloud
centers. The long-term goal is to have many robust, resilient, and rewarding containers in
publicly discoverable locations. There are undoubtedly pioneering tools and platforms to
compose better and bigger containers out of those customizable, configurable, and compact
containers through commingling and collaboration.

Securing Docker Containers

[228]

The security ramifications of Docker containers
The surging popularity of Docker technology is primarily due to the fact that Docker Inc., in
collaboration with other interested parties, has introduced an open and industry-strength
image format for efficiently packaging, distribution, and running of software applications.
However, stuffing many applications into a system opens up definite worries and
vulnerabilities:

Exploiting host kernels: Containers share the same host kernel and this sharing
may turn out to be a single point of failure for the containerization paradigm. A
flaw in the host kernel could allow a process within a container to break out to
bring down the host machine. Thus the domain of Docker security is about
exploring various options toward limiting and controlling the attack surface on
the kernel. Security administrators and architects have to meticulously leverage
the security features of the host operating system to secure the kernel.
Denial-of-service (DoS) attacks: All containers ought to share kernel resources. If
one container can monopolize access to certain resources including memory and
processing, other containers on the host are bound to starve for computing,
storage, and networking resources. Ultimately, the enigma of DoS creeps in and
legitimate users would struggle for accessing the services.
Container breakouts: An attacker who gains access to a container should not be
able to gain access to other containers or the host. By default, users are not
namespaced and hence any process that breaks out of the container will have the
same privileges on the host as it has in the container. That is, if a process has the
root privilege, then it has the root privilege on the host machine also. This means
that a user can gain the elevated and even root privileges through a bug in an
application code. Then the result is simply irreparable damages. That is, we need
to adhere to the least privilege: each process and container should run with the
minimum set of access rights and resources.
Poisoned images: Docker images also can be compromised and tampered
resulting in bad containers and hosts. We wrote about the methods for
thoroughly cleansing and curating Docker images while depositing in image
repositories. Similarly, strong access control mechanisms are in place for
mitigating the poisoning of images.

Thus, Docker images, containers, clusters, hosts, and clouds are bound to be impeded with
a litany of viruses, malware, and other crucial threats. Thus, the domain of Docker security
has become the most challenging area for both researchers and practitioners lately and we
can expect a number of game-changing and security-enhancing algorithms, approaches,
and articulations in the days ahead.

Securing Docker Containers

[229]

The security facets – virtual machines versus
Docker containers

Docker security is being given prime importance, considering the fact that the adoption and
adaptation of Docker containers are consistently on the rise. Undoubtedly, there are a lot of
works for ensuring utmost security for Docker containers and the latest releases of the
Docker platform have a number of security-enabling features embedded.

In this section, we are going to describe where the Docker containers stand as far as the
security imbroglio is concerned. As containers are being closely examined in
synchronization with Virtual Machines (VMs), we will start with a few security-related
points of VMs and containers. Let's start with understanding how VMs differ from
containers. Typically, VMs are heavyweight and hence bloating, whereas containers are
lightweight and hence, slim and sleek. The following table captures the renowned qualities
of VMs and containers:

Virtual Machines Containers

A few VMs run together on a single
physical machine (low density).

Tens of containers can run on a single
physical machine or VM (high density).

This ensures complete isolation of VMs for
security.

This enables the isolation at the process level
and provides additional isolation using
features, such as namespaces and cgroups.

Each VM has its own OS and the physical
resources managed by an underlying
hypervisor.

Containers share the same kernel with their
Docker host.

For networking, VMs can be linked to
virtual or physical switches. Hypervisors
have a buffer for I/O performance
improvement, NIC bonding, and so on.

Containers leverage standard IPC
mechanisms, such as signals, pipes, sockets,
and so on, for networking. Each container
gets its own network stack.

Securing Docker Containers

[230]

The following diagram illustrates how hypervisor-based virtualization enables the
realization of VMs out of a physical machine:

Securing Docker Containers

[231]

The following diagram vividly conveys how containerization is distinguishably deviating
from hypervisor-based virtualization:

The debate on the security side of VMs and containers is heating up. There are arguments
and counter arguments in favor of one or the other. In the case of the virtualization
paradigm, the hypervisors are the centralized and core controllers for the VMs. Any kind of
access of freshly provisioned VMs needs to go through this hypervisor solution, which
stands as a solid wall for any kind of unauthenticated, unauthorized, and unethical
purposes. Therefore, the attack surface of a VM is smaller when compared to containers.
The hypervisor has to be hacked or broken into in order to impact other VMs. This means
that an attacker has to route an attack through both the VM kernel and the hypervisor
before being able to touch the host kernel.

Securing Docker Containers

[232]

In contrast to the virtualization paradigm, the containers are placed directly on top of the
kernel of the host system. This lean and mean architecture gives a very much higher
efficiency because it completely eliminates the emulation layer of a hypervisor and also
offers a much higher container density. However, unlike the VM paradigm, the container
paradigm does not have many layers, so one can easily gain access to the host and other
containers if any of the containers is compromised. Therefore, the attack surface of a
container is larger when compared to VMs.

However, the designers of the Docker platform have given a due consideration to this
security risk and designed the system to thwart most of the security risks. In the ensuing
sections, we will discuss the security that is innately designed in the system, the solutions
being prescribed to substantially enhance the container security, and the best practices and
guidelines.

The prominent security-fulfilment features of
containers
Linux containers, especially Docker containers, have a few interesting security-fulfilling
features innately.

As discussed, Docker uses a host of security barricades to stop breaking out. That is, if one
security mechanism gets broken, other mechanisms quickly come in the way of containers
being hacked. There are a few mainline zones that are to be examined when evaluating the
security implications of Docker containers. As emphasized previously, Docker brings a
variety of isolation capabilities to containerized applications to sharply increase their
security. Most of them are made available out of the box. The policy addition, annulment,
and amendment capabilities at granular level take care of the security requirements of
containerization. The Docker platform allows you to do the following:

Isolate applications from each other
Isolate applications from the host
Improve the security of your application by restricting its capabilities
Encourage adoption of the principle of least privilege

This open-source platform is inherently able to provide these isolations for all kinds of
applications on different runtime environments such as VMs, bare metal servers, and
traditional IT.

Securing Docker Containers

[233]

Immutable infrastructure
When you deploy an update to your application, you should create new instances (servers
and/or containers) and destroy the old ones, instead of trying to upgrade them in place.
Once your application is running, you don't touch it! The benefits come in the form of
repeatability, reduced management overhead, easier rollbacks, and so on. An immutable
image is an image that contains everything it needs to run the application, so it comprises
the source code. One of the principles of Docker containers is that an image is immutable.
That is, once built, it is unchangeable, and if you want to make changes, you'll get a new
image as a result.

Docker containers are self-sufficient and hence we just have to run the container without
any hassle about anything else, such as mounting volumes. This means that we can share
our application with our users or partners in a more easy and transparent way. The direct
consequence is that we can easily scale our system in an automated manner with tools, such
as Kubernetes, that allows us to run a set of containers on a set of machines, that is, a
cluster.

Finally, the immutable containers are bound to collapse if someone tries to play with them
and hence any kind of manipulation toward malfunctioning is nullified at the initial stage
itself.

Resource isolation
As we all know, containers are being positioned for the era of the Microservices
Architecture (MSA). That is, in a single system, there can be multiple generic as well as
purpose-specific services that dynamically collaborate with one another for realizing easy-
to-sustain distributed applications. With the multiplicity and heterogeneity of services in a
physical system on the climb, it is natural that the security complexity is bound to shoot up.
Therefore, resources need to be clearly demarcated and isolated in order to escape from any
kind of perilous security breaches. The widely accepted security approach is to leverage the
kernel features including namespaces. The following is the explanation of namespaces and
cgroups:

Securing Docker Containers

[234]

Namespaces: A Linux namespace wraps a set of system resources and presents
them to processes within the namespace, making it look as if they are dedicated
to the processes. In short, the namespace is a resource management tool that
helps in isolating system resources for processes. Kernel namespaces provide the
first and foremost form of isolation. Processes running in a container don't affect
processes running in another container or in the host system. The network
namespace ensures that each container gets its own network stack, thus
restricting the access to the interfaces of other containers.
Cgroups: This is a Linux kernel concept that governs the isolation and usage of
system resources, such as CPU and memory, for a group of processes. For
example, if you have an application that is taking up a lot of CPU cycles and
memory, such as a scientific computing application, you can put the application
in a cgroup to limit its CPU and memory usage. It ensures that each container
gets its fair share of memory, CPU, and disk I/O, and more importantly, that a
single container cannot bring the system down by exhausting one of those
resources.

Resource accounting and control
Containers consume different physical resources in order to deliver their unique
capabilities. However, the resource consumption has to be disciplined, orderly and hence,
critically regulated. When there is a deviation, there is a greater possibility of invalidating
the containers from performing their assigned tasks in time. For example, the DoS results if
the resource usage is not systematically synchronized.

The Linux containers leverage cgroups to implement resource accounting and auditing to
run applications in a frictionless manner. As we all know, there are multiple resources that
contribute to run the containers successfully. They provide many useful metrics and ensure
that each container gets its fair share of memory, CPU, and disk I/O. Further, they
guarantee that a single container cannot bring the system down by exhausting any one of
these resources. This feature helps you fend off some DoS attacks. This feature helps in
running containers as multi-tenant citizens in cloud environments to ensure their uptime
and performance. Any kind of exploitation by other containers are identified proactively
and nipped in the bud so that any kind of misadventure gets avoided.

Securing Docker Containers

[235]

The root privilege – impacts and best practices
The Docker Engine efficiently protects the containers from any malicious activities by
leveraging the recently mentioned resource isolation and control techniques. Nonetheless,
Docker exposes a few potential security threats because the Docker daemon runs with the
root privilege. Here, in this section, we list out a few security risks and the best practices to
mitigate them.

Another important principle to adhere to is the least privilege. Each process within a
container has to run with the minimal access rights and resources in order to deliver its
function. The advantage here is that if a container gets compromised, the other resources
and data can escape from further attacks.

The trusted user control
Since the Docker daemon runs with the root privilege, it has the capability to mount any
directory from the Docker host to the container, without limiting any access rights. That is,
you can start a container, where the /host directory will be the / directory on your host,
and the container will be able to alter your host filesystem without any restriction. This is
just an example among a myriad of malicious uses. Considering these activities, the latter
versions of Docker restricts the access to the Docker daemon through a UNIX socket.
Docker can be configured to access the daemon through the REST API over HTTP if you
explicitly decide to do so. However, you should ensure that it will be reachable only from a
trusted network or VPN or protected with stunnel and client SSL certificates. You can also
secure them with HTTPS and certificates.

Non-root containers
As mentioned previously, the Docker containers by default run with the root privilege and
so does the application that runs inside the container. This is another major concern from
the security perspective because hackers can gain root access to the Docker host by hacking
the application running inside the container. Docker provides a simple yet powerful
solution to change the container's privilege to a non-root user and thus thwart malicious
root access to the Docker host. This change to the non-root user can be accomplished using
the -u or --user option of the docker run subcommand or the USER instruction in the
Dockerfile.

In this section, we will demonstrate by showing you the default root privilege of the Docker
container and then continue to modify the root privilege to a non-root user using the USER
instruction in the Dockerfile.

Securing Docker Containers

[236]

First, demonstrate the default root privilege of the Docker container by running a simple id
command in a docker run subcommand, as shown here:

$ sudodocker run --rm ubuntu:16.04 id
uid=0(root) gid=0(root) groups=0(root)

Now, let us perform the following steps:

Craft a Dockerfile that creates a non-root privilege user and modify the default1.
root user to the newly-created non-root privilege user, as shown here:

 ##
 # Dockerfile to change from root to
 # non-root privilege
 ###
 # Base image is Ubuntu
 FROM ubuntu:16.04
 # Add a new user "peter" with user id 7373
 RUN useradd -u 7373 peter
 # Change to non-root privilege
 USER peter

Proceed to build the Docker image using the docker build subcommand, as2.
depicted here:

 $ sudo docker build -t nonrootimage .

Finally, let's verify the current user of our container using the id command in a3.
docker run subcommand:

 $ sudo docker run --rm nonrootimage id
 uid=7373(peter) gid=7373(peter) groups=7373(peter)

Evidently, the container's user, group, and the groups are now changed to a non-root user.

Modifying the default root privilege to a non-root privilege is a very effective way of
containing malevolent penetration into the Docker host kernel.

So far, we discussed the unique security-related kernel characteristics and capabilities. Most
of the security holes can be closed down by understanding and applying those kernel
capabilities. Security experts and exponents, having considered the faster and widespread
adoption of the raging containerization idea in production environments, have brought
forth a few more additional security solutions, described as follows in detail. These security
methods need to be given utmost importance by developers as well as system
administrators while developing, deploying, and delivering enterprise-class containers in
order to nullify any kind of inside or outside security attacks.

Securing Docker Containers

[237]

SELinux for container security
Security-Enhanced Linux (SELinux) is a brave attempt to clean up the security holes in
Linux containers and is an implementation of a Mandatory Access Control (MAC)
mechanism, Multi-Level Security (MLS), and Multi-Category Security (MCS) in the Linux
kernel. There is a new collaborative initiative, referred to as the sVirt project, which is being
built on SELinux, and this is getting integrated with Libvirt to provide an adaptable MAC
framework for VMs as well as containers. This new architecture provides a sheltered
separation and safety net for containers, as it primarily prevents root processes, within the
container, from interfacing and interfering with other processes running outside this
container. Docker containers are automatically assigned to an SELinux context specified in
the SELinux policy.

SELinux always checks for all the allowed operations after the standard Discretionary
Access Control (DAC) is completely checked. SELinux can establish and enforce rules on
files and processes in a Linux system and on their actions based on defined policies. As per
the SELinux specifications, files, including directories and devices, are referred to as objects.
Similarly, processes, such as a user running a command, are being termed as subjects. Most
operating systems use a DAC system that controls how subjects interact with objects and
one another. Using DAC on operating systems, users can control the permissions of their
own objects. For example, on a Linux OS, users can make their home directories readable,
giving users and subjects a handle to steal potentially sensitive information. However, DAC
alone is not a fool-proof security method and DAC access decisions are solely based on user
identity and ownership. Generally, DAC simply ignores other security enabling parameters,
such as the role of the user, the function, trustworthiness of the program, and the sensitivity
and integrity of the data.

As each user typically has the complete discretion over their files, ensuring a system-wide
security policy is difficult. Further, every program run by a user simply inherits all the
permissions granted to the user, and the user is free to change the access to their files. All
this leads to a minimal protection against malicious software. Many system services and
privileged programs run with coarse-grained privileges so that any flaw in any one of these
programs can be easily exploited and extended to gain the catastrophic access to the system.

As mentioned at the beginning, SELinux adds MAC to the Linux kernel. This means that
the owners of an object have no control or discretion over the access to an object. The kernel
enforces MAC, which is a general-purpose MAC mechanism, and it needs the ability to
enforce administratively set security policies to all the processes and files in the system.
These files and processes will be used to base decisions on labels containing a variety of
security-centric information.

Securing Docker Containers

[238]

MAC has the inherent capability to sufficiently protect the system. Further on, MAC
ensures application security against any willful hacking and tampering. MAC also provides
a strong separation of applications so that any attacked and compromised application runs
separately.

Next in line is MCS. It is mainly used to protect containers from other containers. That is,
any affected container does not have the capability to bring down other containers in the
same Docker host. MCS is based on the MLS capability and uniquely takes advantage of the
last component of the SELinux label, the MLS field. In general, when containers are
launched, the Docker daemon picks a random MCS label. The Docker daemon labels all of
the content in the container with that MCS label. When the daemon launches the container
process, it tells the kernel to label the processes with the same MCS label. The kernel only
allows the container processes to read/write their own content as long as their MCS label
matches the filesystem content's MCS label. The kernel blocks the container processes from
reading/writing content that is labeled with a different MCS label. This way, a hacked
container process is prevented from attacking different containers. The Docker daemon is
responsible for guaranteeing that no containers use the same MCS label. The cascading of
errors among containers is prohibited through the adroit usage of MCS.

SELinux is not installed by default in Ubuntu 16.04, unlike, Red Hat Fedora or CentOS
distribution, so install SELinux by running the apt-get command, as shown here:

$ sudo apt-get install selinux

Then continue to enable the SELinux mode by running the following sed scripts:

$ sudo sed -i 's/SELINUX=.*/SELINUX=enforcing/' /etc/selinux/config
$ sudo sed -i 's/SELINUXTYPE=.*/SELINUXTYPE=default/' \
/etc/selinux/config

Application Armor (AppArmor) is an effective and easy-to-use Linux application security
system. AppArmor proactively protects the OS and applications from any kind of external
or internal threats and prevents even unknown application flaws from being misused by
any hackers. AppArmor is being made available for guaranteeing Docker containers and
applications present inside the containers. Policies are turning out to be a powerful
mechanism for ensuring container security. Policy formulation and the automated
enforcement of policies go a long way in guaranteeing the safety of containers. AppArmor
comes by default with Ubuntu 16.04, so this is always recommended to be used.

On Docker versions 1.13.0 and later, the Docker binary generates this profile in TMPFS and
then loads it into the kernel. On Docker versions earlier than 1.13.0, this profile is generated
in /etc/apparmor.d/docker instead.

Securing Docker Containers

[239]

The docker-default profile is the default one for running containers. It is moderately
protective while providing wide application compatibility. When you run a container, it
uses the docker-default policy unless you override it with the security-opt option.
For example, the following explicitly specifies the default policy:

$ docker run --rm -it --security-opt \
 apparmor=docker-default hello-world

Secure computing mode (seccomp) is supported by the Docker Engine, a security feature
made available in the Linux kernel. This allows the administrator to restrict the actions
available within a container down to the granularity of a single system call. This capability
greatly restricts the access that an application container has to the host system to perform
actions. Enterprises can configure seccomp profiles accordingly and apply them to the
Docker environment.

The default seccomp profile provides a sane default for running containers with seccomp
and disables around 44 system calls out of over 300. It is moderately protective while
providing wide application compatibility.

The vast majority of applications will be able to operate without any issue with the default
profile. In fact, the default profile has been able to proactively protect Dockerized
applications from several previously unknown bugs.

This is enabled by default on Ubuntu 16.04:

$ cat /boot/config-`uname -r` | grep CONFIG_SECCOMP= CONFIG_SECCOMP=y

SCONE: Secure Linux Containers with Intel SGX, is described by Sergei Arnautov and his
team as a secure container mechanism for Docker that uses the SGX trusted execution
support of Intel CPUs to protect container processes from outside attacks. The design
objectives of SCONE are fixed as follows:

Firstly, it attains small Trusted Computing Base (TCB)
Secondly, it has to have a low-performance overhead

SCONE offers a secure C standard library interface that transparently encrypts/decrypts I/O
data to significantly reduce the performance impact of thread synchronization and system
calls within SGX enclaves. SCONE supports user-level threading and asynchronous system
calls. As per their research paper, the evaluation of SCONE is greatly appreciated by Docker
fans.

Securing Docker Containers

[240]

Loading the Docker images and the security
implications
Docker typically pulls images from the network, which are usually curated and verified at
the source. However, for the purpose of backup and restore, the Docker images can be
saved using the docker save subcommand and loaded back using the docker load
subcommand. This mechanism can also be used to load third-party images through
unconventional means. Unfortunately, in such a practice, the Docker Engine cannot verify
the source and, hence, the images can carry malicious code. So, as the first shield of safety,
Docker extracts the image in a chrooted subprocess for privilege separation. Even though
Docker ensures the privilege separation, it is not recommended to load arbitrary images.

Using container scanning to secure Docker deployments: Docker Content Trust (DCT)
gives publishers an easy and expedited way to guarantee the authenticity of containers that
are getting published in web-scale repositories such as Docker Hub. However,
organizations need to take pragmatic measures to access, assess, and act accordingly for
ensuring the security of their containerized applications throughout their complete life
cycle. Precisely speaking, DCT is a means by which you can securely sign your Docker
images that you have created to ensure that they are from who they say they are from.

Managing container security with Black Duck Hub: Black Duck Hub is a vital tool for
managing the security of application containers throughout the full application life cycle.
Black Duck Hub allows organizations to identify and track vulnerable open-source
applications and components within their environment. Assessments draw on Black Duck's
KnowledgeBase, which contains information on 1.1 million open-source projects and
detailed data on more than 100,000 known open-source vulnerabilities across more than 350
billion lines of code. Through a partnership with Red Hat, Black Duck's ability to identify
and inventory open source and proprietary code production environments is now being
applied to containerized environments. Red Hat has launched Deep Container Inspection
(DCI), an enterprise-focused offering that wraps container certification, policy and trust
into an overall architecture for deploying and managing application containers. As part of
DCI, Red Hat is partnering with Black Duck to give organizations a means of validating the
contents of a container before, during, and after deployment.

Securing Docker Containers

[241]

Integration of Black Duck Hub's vulnerability scanning and mapping capabilities enables
OpenShift customers to consume, develop, and run containerized applications with
increased confidence and security, knowing that these applications contain code that has
been independently validated and certified. The integration also provides a means to track
the impact of newly disclosed vulnerabilities or changes related to container aging that may
impact on security and risk. Black Duck Hub's application vulnerability scanning and
mapping capability give Docker customers the ability to identify vulnerabilities both before
and after deployment and spot issues that arise as containerized applications age or become
exposed to new security vulnerabilities and attacks.

Image signing and verification using TUF
The Docker community expects to have a strong cryptographic guarantee regarding the
code and versions of the Dockerized software. DCT is the new security-related feature
associated with the 1.8 version of the Docker platform. DCT intrinsically integrates The
Update Framework (TUF) into Docker using Notary, an open source tool that provides
trust over any content.

TUF helps developers to secure new or existing software update systems, which are often
found to be vulnerable to many known attacks. TUF addresses this widespread problem by
providing a comprehensive and flexible security framework that developers can integrate
with any software update system. A software update system is an application running on a
client system that obtains and installs software. This can include updates to software that is
already installed or even completely new software.

Protection against image forgery: Once trust is established, DCT provides the ability to
withstand a malicious actor with a privileged network position also known as a Man-in-
the-Middle (MitM) attack.

Protection against replay attacks: In the typical replay attacks, previously valid payloads
are replayed to trick another system. In the case of software update systems, old versions of
signed software can be presented as the most recent ones. If a user is fooled into installing
an older version of a particular software, the malicious actor can make use of the known
security vulnerabilities to compromise the user's host. DCT uses the timestamp key when
publishing the image, providing protection against replay attacks. This ensures that what
the user receives is the most recent one.

Protection against key compromise: If a key is compromised, you can utilize that offline
key to perform a key rotation. That key rotation can only be done by the one with the offline
key. In this scenario, you will need to create a new key and sign it with your offline key.

Securing Docker Containers

[242]

Other security-enhancing projects include the following:

Clair: This is an open-source project for the static analysis of vulnerabilities in
application Docker containers (h t t p s ://g i t h u b . c o m /c o r e o s /c l a i r). It audits
the Docker image locally and also checks vulnerability in container registry
integration. Finally, during the first run, Clair will bootstrap its database with
vulnerability data from its data sources.
Notary: The Docker Notary project is a framework that allows anyone to securely
publish and access content (for example, Docker images) over a potentially
insecure network. Notary allows a user to digitally sign and verify content.
Project Nautilus: Nautilus is Docker's image scanning capability, which can
examine images in Docker Hub to help vulnerabilities that may exist in Docker
containers. Today, Nautilus only works with Docker Hub. It does not support
private or on-premises registries.
AuthZ Plugins: The native Docker access control is all or nothing—you either
have access to all Docker resources or none. The AuthZ framework is Twistlock's
contribution to the Docker code base. AuthZ allows anyone to write an
authorization plugin for Docker to provide fine-grained access control to Docker
resources.
Docker Trusted Registry (DTR): This is Docker's enterprise version of Docker
Hub. You can run DTR on-premises or in your virtual private cloud to support
security or compliance requirements. Docker Hub is open source, whereas DTR is
a subscription-based product sold by Docker. Communications with the registries
use TLS, to ensure both confidentiality and content integrity. By default, the use
of certificates trusted by the public PKI infrastructure is mandatory, but Docker
allows the addition of a company internal CA root certificate to the trust store.

The emerging security approaches
As we all know, the Docker platform makes it easy for developers to update and control the
data and software in containers. Similarly, Docker enables efficiently ensuring all the
components that make an application are current and consistent at all times. Docker also
innately delivers logical segregation of applications running on the same physical host. This
celebrated isolation perfectly promotes fine-grained and efficient enforcement of security
policies. However, as in the traditional environment, data at rest is susceptible to various
attacks ceaselessly from cyber and internal attackers. There are other negative opportunities
and possibilities for Docker environments to be subjected to heavy bombardment.
Consequently, there is an insistence for proper safeguards to be in place. The faster and
easier proliferation of containers and data can significantly expand the number and types of
threats targeting containerized clouds.

Securing Docker Containers

[243]

About Vormetric transparent encryption
Organizations can establish strong controls around their sensitive data in
Docker implementations in an efficient manner. This solution enables
data-at-rest encryption, privileged user access control, and the collection
of security intelligence logs for structured databases and unstructured
files. With these capabilities, organizations can establish persistent, strong
controls around their stored Docker images and protect all data generated
by Docker containers when the data is being written to the Docker host
storage on an NFS mount or a local folder.

The best practices for container security
There are robust and resilient security solutions to boost the confidence of providers as well
as users toward embracing the containerization journey with clarity and alacrity. In this
section, we provide a number of tips, best practices, and key guidelines collected from
different sources in order to enable security administrators and consultants to tightly secure
Docker containers. At the bottom line, if containers are running in a multi-tenant system
and you are not using the proven security practices, then there are definite dangers lurking
around the security front.

The first and foremost advice is, don't run random and untested Docker images on your
system. Strategize and leverage trusted repositories of Docker images and containers to
subscribe and use applications and data containers for application development, packaging,
shipping, deployment, and delivery. It is clear from past experiences that any untrusted
containers that are downloaded from the public domain may result in malevolent and
messy situations. Linux distributions, such as Red Hat Enterprise Linux (RHEL), have the
following mechanisms in place in order to assist administrators to ensure the utmost
security.

The best practices widely recommended by Docker experts (Daniel Walsh Consulting
Engineer, Red Hat) are as follows:

Only run container images from trusted parties
Container applications should drop privileges or run without privileges
whenever possible
Make sure the kernel is always updated with the latest security fixes; the security
kernel is critical
Make sure you have support teams watching for security flaws in the kernel
Use a good quality supported host system for running the containers, with
regular security updates

Securing Docker Containers

[244]

Do not disable security features of the host operating system
Examine your container images for security flaws and make sure the provider
fixes them in a timely manner

As mentioned previously, the biggest problem is that everything in Linux is not
namespaced. Currently, Docker uses five namespaces to alter the process's view of any
system: process, network, mount, hostname, and shared memory. While these give the
users some level of security, it is by no means a comprehensive one such as KVM. In a KVM
environment, processes in a VM do not talk to the host kernel directly. They do not have
any access to kernel filesystems. Device nodes can talk to the VMs kernel, not the hosts.
Therefore, in order to have a privilege escalation out of a VM, the process has to subvert the
VM's kernel, find an enabling vulnerability in the hypervisor, break through SELinux
controls (sVirt), and attack the host's kernel. In the container landscape, the approach is to
protect the host from the processes within the container and to protect containers from
other containers. It is all about combining or clustering together multiple security controls
to defend containers and their contents.

Basically, we want to put in as many security barriers as possible to prevent any sort of
break out. If a privileged process can break out of one containment mechanism, the idea is
to block them with the next barrier in the hierarchy. With Docker, it is possible to take
advantage of as many security mechanisms of Linux as possible. The following are the
possible security measures that can be taken:

Filesystem protection: Filesystems need to be read-only in order to escape from
any kind of unauthorized writing. That is, privileged container processes cannot
write to them and do not affect the host system too. Generally, most of the
applications need not write anything to their filesystems. There are several Linux
distributions with read-only filesystems. It is, therefore, possible to block the
ability of the privileged container processes from remounting filesystems as read
and write. It is all about blocking the ability to mount any filesystems within the
container.
Copy-on-write filesystems: Docker has been using the Advanced Multi-Layered
Unification Filesystem (AUFS) as a filesystem for containers. AUFS is a layered
filesystem that can transparently overlay one or more existing filesystems. When
a process needs to modify a file, AUFS first creates a copy of that file and is
capable of merging multiple layers into a single representation of a filesystem.
This process is called copy-on-write, and this prevents one container from seeing
the changes of another container even if they write to the same filesystem image.
One container cannot change the image content to affect the processes in another
container.

Securing Docker Containers

[245]

The choice of capabilities: Typically, there are two ways to perform permission
checks: privileged processes and unprivileged processes. Privileged processes
bypass all sorts of kernel permission checks, while unprivileged processes are
subject to the full permission checking based on the process's credentials. The
recent Linux kernel divides the privileges traditionally associated with the
superuser into distinct units known as capabilities, which can be independently
enabled and disabled. Capabilities are a per-thread attribute. Removing
capabilities can bring forth several positive changes in Docker containers.
Invariably, capabilities decide the Docker functionality, accessibility, usability,
security, and so on. Therefore, it needs a deeper thinking while embarking on the
journey of adding as well as removing capabilities.
Keeping systems and data secure: Some security issues need to be addressed
before enterprises and service providers use containers in production
environments. Containerization will eventually make it easier to secure
applications for the following three reasons:

A smaller payload reduces the surface area for security flaws
Instead of incrementally patching the operating system, you can
update it
By allowing a clear separation of concerns, containers help IT and
application teams collaborate purposefully

The IT department is responsible for security flaws associated with the
infrastructure. The application team fixes flaws inside the container and is also
responsible for runtime dependencies. Easing the tension between IT and
applications development teams helps smooth the transition to a hybrid cloud
model. The responsibilities of each team are clearly demarcated in order to secure
both containers and their runtime infrastructures. With such a clear segregation,
proactively identifying any visible and invisible endangering security ordeals and
promptly eliminating time, policy engineering and enforcement, precise and
perfect configuration, leveraging appropriate security-unearthing and mitigation
tools, and so on, are being systematically accomplished.

Leveraging Linux kernel capabilities: An average server (bare metal or VM)
needs to run a bunch of processes as root. These typically include ssh, cron,
syslogd, hardware management tools (for example, load modules), and network
configuration tools (for example, handling DHCP, WPA, or VPNs). A container is
very different because almost all of these tasks are being handled by the
infrastructures on which the containers are to be hosted and run. There are
several best practices, key guidelines, technical know-how, and so on in various
blogs authored by security experts. You can find some of the most interesting and
inspiring security-related details at https://docs.docker.com/.

Securing Docker Containers

[246]

Secure deployment guidelines for Docker
containers
Docker containers are increasingly hosted in production environments to be publicly
discovered and used by many. Especially, with the faster adoption of cloud technologies,
the IT environments of worldwide organizations and institutions are getting methodically
optimized and transformed to deftly and decisively host a wider variety of VMs and
containers. There are new improvements and enablements, such as Flocker and Clocker, in
order to speed up the process of taking containers to cloud environments (private, public,
hybrid, and community). There are recommendations that have to be followed while
deploying containers. As we all know, containers remarkably reduce the overhead by
allowing developers and system administrators to seamlessly deploy containers for
applications and services required for business operations. However, because Docker
leverages the same kernel as the host system to reduce the need for resources, containers
can be exposed to significant security risks if not adequately configured. There are a few
carefully annotated guidelines to be strictly followed by both developers and system
administrators while deploying containers. For example,
https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines elaborates in
a tabular form with all the right details.

An indisputable truth is that the software flaws in distributed and complex applications
open the way for intelligent attackers and hackers to break into systems that host critical,
confidential, and customer data. Therefore, security solutions are being insisted and
ingrained across all the layers in the IT stack, and hence, there arise many types of security
vulnerabilities at different levels and layers. For example, the perimeter security that solves
only part of the problem because the changing requirements are mandated for allowing
network access to employees, customers, and partners. Similarly, there are firewalls,
intrusion detection and prevention systems, Application Delivery Controllers (ADCs),
access controls, multifactor authentication and authorization, patching, and so on. Then, for
securing data while in transit, persistence, and being used by applications, there are
encryption, steganography, and hybrid security models. All these are reactive and realistic
mechanisms, but the increasing tendency is all about virtual businesses insisting on
proactive and preemptive security methods. As IT is tending and trending toward the much
anticipated virtual IT, the security issues and implications are being given extra importance
by security experts.

Securing Docker Containers

[247]

The future of Docker security
There will be many noteworthy improvisations, transformations, and disruptions in the
containerization space in the near future. Through a host of innovations and integrations,
the Docker platform is being positioned as the leading one for strengthening the
containerization journey. The following are the prime accomplishments through the smart
leverage of the Docker technology:

Strengthening the distributed paradigm: While computing is going to be
increasingly distributed and federated, the MSA plays a very decisive and deeper
role in IT. Docker containers are emerging as the most efficient ones for hosting
and delivering a growing array of microservices. With container orchestration
technologies and tools gaining greater recognition, microservices (specific as well
as generic) get identified, matched, orchestrated, and choreographed to form
business-aware composite services.
Empowering the cloud paradigm: The cloud idea is strongly gripping the IT
world to bring in the much-insisted IT infrastructure rationalization,
simplification, standardization, automation, and optimization. The abstraction
and virtualization concepts, the key ones for the unprecedented success of the
cloud paradigm, are penetrating into every kind of IT module. Originally, it
started with server virtualization and now it is all about storage and networking
virtualization. With all the technological advancements around us, there is a
widespread keenness to realize software-defined infrastructures (software-
defined compute, storage, and networking). The Docker Engine, the core and
critical portion of the Docker platform, is duly solidified in order to bring in the
necessary eligibility for containers to run on software-defined environments
without any hitch or hurdle.
Enabling IT elasticity, portability, agility, and adaptability: Containers are
emerging as the flexible and futuristic IT building blocks for bringing in more
resiliency, versatility, elegance, and suppleness. Faster provisioning of IT
resources for ensuring higher availability and real-time scalability, the easy
elimination of all kinds of frictions between the development and operation
teams, the guarantee of native performance of IT, the realization of organized and
optimized IT for enhanced IT productivity, and so on, are some of the exemplary
things being visualized for Docker containers toward the smarter IT.

Containers will be a strategic addition to VMs and bare metal servers in order to bring in
deeper IT automation, acceleration, and augmentation, thereby the much-hyped and hoped
for business agility, autonomy, and affordability will be achieved.

Securing Docker Containers

[248]

Summary
Security is definitely a challenge and an important aspect not to be sidestepped. If a
container gets compromised, then bringing down the container host is not a difficult task.
Thus, ensuring security for containers and then hosts is indispensable for the flourishing of
the containerization concept, especially when the centralization and federation of IT
systems are on the climb. In this chapter, we specifically focused on the sickening and
devastating security issues on Docker containers and explained the ways and means of
having foolproof security solutions for containers that host dynamic, enterprise-class, and
mission-critical applications. In the days to unfurl, there will be fresh security approaches
and solutions in order to guarantee impenetrable and unbreakable security for Docker
containers and hosts, as the security of containers and their contents is of the utmost
importance for service providers as well as consumers.

12
The Docker Platform – Distinct

Capabilities and Use Cases
Without any doubt, IT is the most happening and highly visible domain at any point in
time. As every kind of enterprising business (small, medium, and large) is being enabled
through the delectable advancements in the IT space, there is a direct and decisive
relationship between IT and business. With the IT budgets being pruned by business
behemoths year after year due to the stagnant, even sliding, world economy, it is a clear-cut
mandate and timely reminder for IT professionals to do more with less. That is, there is a
continued insistence for deeper and deft automation of various business operations by
methodically leveraging the proven and promising technologies, tools, and tips.
Infrastructure optimization through hybrid clouds, process excellence through integration
and orchestration techniques, the fast spread of the DevOps culture, the foundational aspect
of compartmentalization through virtualization and containerization approaches, the
penetrative, pervasive, and persuasive nature of APIs, the fast emergence of MSA, the
cognitive analytics, and so on, are being overwhelmingly recognized and reaped as the
dominant and prominent ways forward toward business agility, affordability, adaptivity,
and autonomy.

Docker-enabled containerization is an intensely reviewed mechanism that has the innate
strength to bring in certain critical disruptions for the field of software engineering. The
Docker paradigm is all about optimal packaging of any kinds of software applications along
with their dependencies to be shipped, deployed, and executed across any on-premise and
off-premise environments. Containerized applications (applications and their execution
containers) are extremely lightweight, portable, scalable, reproducible, and repeatable
packages compared with the currently available options in the software industry.

The Docker Platform – Distinct Capabilities and Use Cases

[250]

The Docker idea facilitates many purposeful innovations. Docker (through its unique
packaging format and the highly integrated platform) simplifies and accelerates the
formation of publicly discoverable, network accessible, and remotely deployable
containerized applications that are easily composable, consumable, and configurable.
Further, there are software solutions for robust monitoring, measuring, and managing
containers. In this chapter, we will discuss how the accelerated maturity and stability of the
Docker paradigm ensures the much-needed business transformations. The literature talks
about several game-changing implications of the Docker technology toward the next-
generation IT and this chapter aims to unravel the Docker mystery.

Describing containers
Compartmentalization that comprises both virtualization and containerization is the new
norm for IT agility. Virtualization has been the enigmatic foundation for the enormous
success of cloud computing. Now with the containerization idea becoming ubiquitous and
usable, there is a renewed focus on using containers for faster application building,
deployment, and delivery. Containers are distinctively fitted with a few game-changing
capabilities and hence there is a rush in embracing and evolving the containerization
technologies and tools.

Containers are very hot in the industry. Essentially, a container is lightweight, virtualized,
and portable, and the Software-Defined Environment (SDE) in which software can run is
in isolation of other software running on the same physical host. The software that runs
inside a container is typically a single-purpose application. Containers bring forth the
much-coveted modularity, portability, and simplicity for IT environments. Developers love
containers because they speed up the software engineering, whereas the operation team
loves containers because they can just focus on runtime tasks such as logging, monitoring,
managing the life cycle, and utilizing the resource rather than managing deployment and
dependency.

Distinguishing Docker containers
Precisely speaking, Docker containers wrap a piece of software in a complete filesystem that
contains everything that is needed to run: source code, runtime, system tools, and system
libraries (anything that can be installed on a server). This guarantees that the software will
always run the same, regardless of its operating environment.

The Docker Platform – Distinct Capabilities and Use Cases

[251]

The main motivations of Docker-enabled containerization are as follows:

Containers running on a single machine share the same operating system kernel.
They start instantly and use less RAM. Container images are constructed from
layered filesystems and share common files, making disk usage and image
downloads much more efficient.
Docker containers are based on open standards. This standardization enables
containers to run on all major Linux distributions and other operating systems
such as Microsoft Windows and Apple Macintosh.

There are several benefits being associated with Docker containers, as listed here:

Efficiency: As mentioned earlier, there can be multiple containers on a single
machine leveraging the same kernel so they are lightweight, can start instantly,
and make more efficient use of RAM.

Resource sharing: This among workloads allows greater efficiency
compared to the use of dedicated and single-purpose equipment. This
sharing enhances the utilization rate of resources.
Resource partitioning: This ensures that resources are appropriately
segmented in order to meet the system requirements of each workload.
Another objective for this partitioning is to prevent any kind of
untoward interactions among workloads.
Resource as a Service (RaaS): Various resources can be individually
and collectively chosen, provisioned, and given to applications directly
or to users to run applications.

Native performance: Containers guarantee higher performance due to their
lightweight nature and less wastage.
Portability: Applications, dependencies, and configurations are all bundled
together in a complete filesystem, ensuring applications work seamlessly in any
environment (VMs, bare metal servers, local or remote, generalized or specialized
machines, and so on). The main advantage of this portability is that it is possible
to change the runtime dependencies (even programming language) between
deployments.

The Docker Platform – Distinct Capabilities and Use Cases

[252]

The following diagram illustrates how containers are being moved and swapped across
multiple hosts:

Real-time scalability: Any number of fresh containers can be provisioned in a
few seconds in order to handle the user and data loads. On the reverse side,
additionally provisioned containers can be knocked down when the demand
goes down. This ensures higher throughput and capacity on demand. Tools such
as Docker Swarm, Kubernetes, and Apache Mesos further simplify elastic scaling.
High availability: By running with multiple containers, redundancy can be built
into the application. If one container fails, then the surviving peers—which are
providing the same capability—continue to provide service. With orchestration,
failed containers can be automatically recreated (rescheduled) either on the same
or a different host, restoring full capacity and redundancy.
Maneuverability: Applications running in Docker containers can be easily
modified, updated, or extended without impacting other containers in the host.
Flexibility: Developers are free to use the programming languages and
development tools they prefer.
Clusterability: Containers can be clustered for specific purposes on demand and
there are integrated management platforms for cluster-enablement and
management.
Composability: Software services hosted in containers can be discovered,
matched for, and linked to form business-critical, process-aware, and composite
services.
Security: Containers isolate applications from one another and the underlying
infrastructure by providing an additional layer of protection for the application.

The Docker Platform – Distinct Capabilities and Use Cases

[253]

Predictability: With immutable images, the image always exhibits the same
behavior everywhere because the code is contained in the image. This means a lot
in terms of deployment and in the management of the application life cycle.
Repeatability: With Docker, one can build an image, test that image, and then
use that same image in production.
Replicability: With containers, it is easy to instantiate identical copies of full
application stack and configuration. These can then be used by new hires,
partners, support teams, and others to safely experiment in isolation.

Briefing the Docker platform
Linux containers are hugely complicated and not user-friendly. Having realized the fact
that several complexities are coming in the way of massively producing and fluently using
containers, an open-source project got initiated with the goal of deriving a sophisticated and
modular platform comprising an enabling engine for simplifying and streamlining the life
cycle phases of various containers. This means that the Docker platform is built to automate
the crafting, packaging, shipping, deployment, and delivery of any software application
embedded inside a lightweight, extensible, and self-sufficient container. Docker is
positioned as the most flexible and futuristic containerization technology in realizing highly
competent and enterprise-class distributed applications. This will make deft and decisive
impacts on the IT industry, as instead of large monolithic applications distributed on a
single physical or virtual server, companies are building smaller, self-defined and
sustainable, easily manageable, and discrete ones. In short, services are becoming
microservices these days in order to give the fillip to the containerization movement.

The Docker platform enables artistically assembling applications from disparate and
distributed components and eliminates any kind of deficiencies and deviations that could
come when shipping the code. Docker, through a host of scripts and tools, simplifies the
isolation of software applications and makes them self-sustainable by running them in
transient containers. Docker brings the required separation for each of the applications from
one another as well as from the underlying host. We have been hugely accustomed to VMs
that are formed through an additional layer of indirection in order to bring the necessary
isolation. This additional layer and overhead consumes a lot of precious resources and is
hence an unwanted cause of the slowdown of the system. On the other hand, Docker
containers share all the resources (compute, storage, and networking) to the optimal level
and hence can run much faster. Docker images, being derived in a standard form, can be
widely shared and stocked easily for producing bigger and better application containers. In
short, the Docker platform lays a stimulating and scintillating foundation for optimal
consumption, management, and maneuverability of various IT infrastructures.

The Docker Platform – Distinct Capabilities and Use Cases

[254]

The Docker platform is an open-source containerization solution that smartly and swiftly
automates the bundling of any software applications and services into containers and
accelerates the deployment of containerized applications in any IT environments (local or
remote systems, virtualized or bare metal machines, generalized or embedded devices, and
so on). The container life cycle management tasks are fully taken care of by the Docker
platform. The whole process starts with the formation of a standardized and optimized
image for the identified software and its dependencies. Now the Docker platform takes the
readied image to form the containerized software. There are image repositories made
available publicly as well as in private locations. Developers and operations teams can
leverage them to speed up software deployment in an automated manner.

The Docker ecosystem is rapidly growing with a number of third-party product and tool
developers in order to make Docker an enterprise-scale containerization platform. It helps
to skip the setup and maintenance of development environments and language-specific
tooling. Instead, it focuses on creating and adding new features, fixing issues, and shipping
software. "Build once and run everywhere," is the endemic mantra of the Docker-enabled
containerization. Concisely speaking, the Docker platform brings in the following
competencies:

Agility: Developers have the freedom to define environments and the ability to
create applications. IT operation teams can deploy applications faster, allowing
the business to outpace the competition.
Controllability: Developers own all the code from infrastructure to application.
Manageability: IT operation team members have the manageability to
standardize, secure, and scale the operating environment while reducing overall
costs to the organization.

The evolving Docker platform components
Docker is a platform for developing, shipping, and running powerful applications crafted
out of distributed microservices. The platform is in the expansion mode with the persistent
support rendered by a number of third-party product vendors and start-ups in the Docker
space. For different use cases, additional automation tools are being built and released to
the marketplace:

Docker Hub
Docker Trusted Registry
Docker Engine
Docker Kitematic
Docker Toolbox

The Docker Platform – Distinct Capabilities and Use Cases

[255]

Docker Registry
Docker Machine
Docker Swarm
Docker Compose
Docker Cloud
Docker Datacenter

With the ongoing requirements, we can safely expect new additions to the preceding list in
the days ahead. The Docker team is proactively and preemptively working on various tools
in order to bring in the desired automation and simplicity for lessening the workloads of IT
professionals.

Implications of the Docker technology
With the systematic and sagacious usage of the Docker idea, enterprising businesses and
organizations across the globe are bound to benefit immensely for their business
transformation needs. This section will describe the paramount and potential impacts of the
Docker paradigm. Without any doubt, containers are a hot topic these days. Corporates,
service providers (cloud, communication, and so on), and consumers are pursuing the
Docker dream. Docker has been creating multifaceted impressions and implications for
enterprise and cloud IT. The systematic leverage of the Docker technology is assuredly
accentuated to pour in delectable advancements for businesses.

Modern enterprise development
Conceptually, a container image can be thought of as a snapshot of a container's filesystem
that can be stored on disk. The container filesystem is typically arranged in layers and every
change gets carefully captured in a separate layer. This allows the container image to
indicate from which parent image it is derived. The Docker images, being represented
through a standardized and simplified format, can ultimately lead to the rapid and
rewarding deployment and execution of software applications. Containers are portable.
This means that building images once and running them everywhere is the crux of the
portability goal. Containers can run on any hardware that runs the relevant operating
system.

The Docker Platform – Distinct Capabilities and Use Cases

[256]

There are challenges too. As there can be many containers in a single Docker host, there can
be the issue of the container sprawl in a cloud environment (private, public, and hybrid).
For effective monitoring and management, the concepts of clustering and orchestration are
being leveraged in order to find and bind different and distributed containers. Further on,
for constructing distributed applications through containerized applications, service
composition through the orchestration technique is encouraged. Docker Compose is the key
solution for making composite applications. For working at the container level, there are
automated monitoring, measurement, management, and orchestration software solutions
(Docker Swarm, Kubernetes, and Mesos). In the following sections, we explain how
containers are the best fit for agile and adroit businesses. This does not mean that
virtualization is out of business. There are certain situations and scenarios wherein the
mixed and merged usage of virtualization and containerization is posted for wonders.

Combining these special powers with container images, resulting in a viable and venerable
abstraction, enables a clean isolation between applications from the underlying operating
systems. This neat decoupling of image and OS makes it possible to deploy software
applications in development, testing, staging, and production environments without any
hurdle or hitch. This Docker-enabled uniformity and ubiquity improves deployment
reliability and speeds up modern enterprise development by decimating all kinds of
inconsistencies and unnecessary frictions. The widely expressed recommendation is to have
an airtight container image that can encompass and encapsulate all of an application's
dependencies into a package. This then can be deployed into a container to enable shipping
to run anytime anywhere.

MSA and Docker containers
The service-enablement has been going on successfully for a number of reasons and
objectives. Every system (physical, mechanical, electrical, and electronic) is systematically
enabled with easily consumable interfaces. RESTful interfaces and services have become
pervasive due to their simplicity. In the recent past, with the surging popularity of the web,
enterprise, mobile, and cloud applications, the REST idea has clearly captured a lot of
attention and attraction. It has been quickly discovered that splitting out business functions
into reusable services is very effective; however, at the same, it introduces a risk point. This
means that every time a service gets updated, then all the other services that make use of
the updated service have to be subjected to a variety of formal verifications and validations.
This is because services inevitably have to find, bind, and leverage other services and their
unique capabilities and data points to be right and relevant. This unbridled sharing can
happen locally or with remote ones over networks.

The Docker Platform – Distinct Capabilities and Use Cases

[257]

Basically, the microservices approach, in a nutshell, dictates that instead of having one giant
code base that all developers touch, that often becomes perilous to manage, it is better to
have numerous smaller code bases managed by small and agile teams that sit across
different time zones. Every code base has to interoperate through well-intended and
defined APIs. Every code base is small in size but also totally decoupled from one another.
The dependency is gone totally, resulting in better security, reliability, simplicity,
scalability, availability, and so on. The code base is termed as microservices. The motives for
the unprecedented take off of microservices are definitely many; specifically, the granular
scaling, easy manageability, maneuverability, reconfigurability and extensibility, strong
security through API access, the appropriateness of containers as the optimal runtime
environment, and so on, are the widely articulated ones. Microservices can be
independently deployable, horizontally scalable, supported by any backend databases
(SQL, NoSQL, NewSQL, In-Memory, and so on), and built by any programming languages.

Docker containers are the best fit for hosting microservices. This intentional
containerization of single services or processes makes it very simple to manage, update, and
scale out these services. Now with the number of microservices in any IT environment
growing very rapidly, the management complexity is to zoom. This means that the
challenges include how to manage single services in a cluster and how to tackle multiple
services spread across distributed and different hosts. Kubernetes, MaestroNG,
Mesosphere, and Fleet spring up to answer this growing need.

In summary, one prominent reason is the onset and rollout of microservices in droves and
this has brought out the indispensability of containers. The various targets expected out of
microservices are being fulfilled by stuffing microservices within containers. This
interesting combination is bound to play a very stellar role for the IT teams of worldwide
enterprising businesses. Practically speaking, the widespread usage of the containerization
tenet has laid a stimulating foundation for the explosion of purpose-specific as well as
agnostic microservices.

Case study
SA Home Loans faced challenges in development, as well as in production. SA currently
has four scrum teams, each with a development and a system test lab. The team faced slow
deployment times and was only able to build and deploy two applications in the dev labs,
causing long deployment cycles and sometimes taking up to 2 weeks to get applications
over to the testing environment. This issue got extended to production as well. The main
home loan servicing software monolithic was built using legacy technologies.

The Docker Platform – Distinct Capabilities and Use Cases

[258]

The IT team made the conscious decision to adopt the MSA to gain the agility, portability,
and extensibility, and the break-in resulted in 50 microservices. Having understood the
significance of the blossoming Docker technology, the team could move all the
microservices to containers.

The team also needed a production-ready orchestration service that could give it a single
point from which to manage and distribute containers onto the nodes, as well as give the
team a high-level oversight of all the containers. Docker Swarm is the orchestration tool. SA
Home Loans now uses Docker Datacenter, the on-premises solution that brings container
management and deployment services to the enterprise via a supported Container as a
Service (CaaS) platform that is hosted locally. SA Home Loans now builds and deploys
applications up to 20-30 times a day. Universal Control Plane (UCP) has embedded Swarm
to give the production-ready container orchestration solution.

Infrastructure optimization
Virtualization has been the main mechanism for hugely optimizing and organizing various
IT infrastructures (server machines, storage appliances, networking, and security solutions).
The proven divide and conquer technique accomplished through VMs is the main target for
IT optimization. In the recent past, Docker containers emerged as a blessing in disguise.
Containers contain only what is necessary to build, ship, and run software applications.
Unlike VMs, there is no guest OS or hypervisor necessary for containers. This allows
enterprises to radically reduce the amount of storage and totally eliminate hypervisor
licensing costs. The number of containers that can be accommodated in a physical host or in
a VM is more compared to the number of VMs being stuffed in a physical machine. This
means that containers are fine-grained whereas VMs are coarse-grained. The wastage of
resources is very minimal in the case of containerization. Every bit of IT infrastructures and
resources is being methodically used by containers.

Portability is another factor. This enables IT operations teams to move workloads across
different cloud services, physical servers, or VMs without locking them into using a specific
infrastructure tooling. Workload consolidation or optimization through containers is error-
free because containers can run everywhere. In the case of VMs, VM placement is a tricky
and tough affair considering the diversity of hypervisors / Virtual Machine Monitors
(VMMs). The point here is that Docker allows enterprises to optimize infrastructure
utilization and decrease the cost of maintaining existing applications, which is incidentally
the number one challenge enterprise IT teams face every day.

The Docker Platform – Distinct Capabilities and Use Cases

[259]

Docker greatly reduces the amount of time it takes to install an application, scale to meet
customer demands, or simply start new containers. This means, taking new offerings to
market is exceedingly fast because the underlying infrastructure (virtual or physical) is
being readied in a few seconds.

Case study
A client with the need to establish and provide Database as a Service (DaaS) capability has
resolved that every database instance is provisioned and stationed inside its own VM. There
can be occasions wherein there are 100 VMs running 100 databases. This is extremely
inefficient, wasting a lot of expensive resources. Now the same number of database
instances can be run on that number of containers, which in turn could run inside a few
VMs. The result is huge cost savings. Another case study follows:

Customer details: Swisscom is a Switzerland's leading telecom provider offering
a range of enterprise and consumer services.
The business challenges: This includes offering a reliable, easy-to-maintain DaaS
to customers while achieving server density necessary to operate efficiently.
The solution approach: Flocker by ClusterHQ provides the ability to
programmatically manage persistent data for Docker containers stored in EMC
ScaleIO.
The business outcome: This solution has substantially increased the density of
applications hosted per server, improved operational management of databases,
and laid out a stimulating and sparkling platform for sustainable innovation in
consumer and enterprise IT sectors.

Enabling DevOps
Agile development is being increasingly followed in the IT industry these days in order to
elegantly ensure business agility, adaptivity, and affordability. This means that it is true
that the much-demanded business agility is being fulfilled by stringently embracing the
competent methods for IT agility. There is a growing array of viable and venerable
mechanisms to realize IT agility. Primarily, IT agility is being driven through agile
programming methods such as pair programming, Extreme Programming (XP), Lean,
Scrum and Kanban, Test-Driven Development (TDD), and Behaviour-Driven
Development (BDD).

The Docker Platform – Distinct Capabilities and Use Cases

[260]

Now the software development process gets speeded up remarkably. However, there is a
big disconnect between development and operation. This means that the real IT agility gets
realized when the operation team also strictly follows agile, adaptive, and automated IT
operations. Enterprise DevOps is the most promising way forward for establishing the
beneficial connect between developers and operators so that the IT systems get up and
running quickly. Containerization is the most positive development toward making
DevOps pervasive, penetrative, and persuasive.

Docker is ideal for quickly setting up development and test environments as well as
sandbox environments. Docker interestingly offers a better separation of concerns for
guarantee-efficient DevOps; container crafters need to focus only on building Docker
images and committing them to make them containers. The operation team could monitor,
manage, and maintain the containers. Finally, Docker can be easily integrated into multiple
DevOps tools to achieve better workflow automation and continuous integration. Also, it
enables the DevOps teams to scale up development and test environments, quickly and
cost-effectively, and to move applications from development, to test, to production in a
seamless manner.

Continuous integration and continuous
deployment
Continuous Integration (CI) and Continuous Deployment (CD) are the most sought-after
technologies and tools for having agile IT. In the past, developers would automate their
build process using any one of the build tools. Then they would hand over their code to the
operation team to proceed with deployment, administration, management, and support.
There are many configuration management and software deployment tools in order to
automate the tedious and tough affair of software deployment and delivery. This
segregated pattern brought forth a number of recurring issues. With containers, the
operation team could build standard container images of the full stack that they want to
deploy and deliver. Developers can use them to deploy their code to do unit testing. That
same tested, refined, and hardened image can be used across all environments
(development, test, stage, and production) to get the same results every time. This
containerization-sponsored setup specifically accelerates the software deployment and
delivery activities in a risk-free fashion.

The Docker Platform – Distinct Capabilities and Use Cases

[261]

As per the Docker site, CI/CD typically merges development with testing, allowing
developers to build code collaboratively, submit it to the master branch, and check for any
issues. This means that developers can build and test their code to catch bugs early in the
applications development life cycle. Since Docker can integrate with tools such as Jenkins
and GitHub, developers can submit code in GitHub, test the code, and automatically trigger
a build using Jenkins, and once the image is complete, it can be added to Docker registries.
This ultimately streamlines the process and saves times on build and setup processes, all
while allowing developers to run tests in parallel and automate them so that they can
continue to work on other projects while tests are being run. The environment
dependencies and inconsistencies get eliminated with the containerization.

Continuous delivery
The continuous delivery approach involves fast software development iterations and
frequent, safe updates to the deployed application. It is all about reducing risk and
delivering value faster by producing reliable software in short iterations. Because Docker
encapsulates both the application and the application's environment or infrastructure
configuration, it provides a key building block for two essential aspects of a continuous
delivery pipeline. Docker makes it easy to test exactly what you are going to deploy. The
possibility of making serious errors during the handoff or bringing in any undesirable
changes is less likely in this case. Docker containers encourage a central tenet of continuous
delivery: they reuse the same binaries at each step of the pipeline to ensure no errors are
introduced in the build process itself.

As indicated earlier, Docker containers provide the basis for immutable infrastructures.
Applications can be added, removed, cloned, and/or their constituencies can change
without leaving any residues behind. IT infrastructures can be changed without affecting
the applications that run on them. The Docker tool ecosystem is the growth trajectory and
hence a lot of delivery-related works get simply automated and accelerated to add business
value. As Martin Fowler says, you actually do continuous delivery in the following
situations:

If your software is deployable throughout its life cycle
If your team prioritizes keeping the software deployable over working on new
features
If anybody can get fast, automated feedback on the production readiness of their
systems anytime somebody makes a change to them
If you can perform push-button deployments of any version of the software to
any environment on demand

The Docker Platform – Distinct Capabilities and Use Cases

[262]

Docker also easily integrates with CI and continuous delivery platforms enabling
development and testing to deliver seamless updates to production. In the case of any kind
of failure, it is possible to roll back to the previous working version.

Accurate testing
Docker accelerates DevOps by creating a common framework for building, testing, and
administering distributed applications, independent of languages, development tools or
environmental variables. Docker improves collaboration by allowing developers, Quality
Assurance (QA) teams, and system administrators to efficiently share code, exchange
content, and integrate applications. We can be confident that our QA environment exactly
matches what will be deployed in the production environment.

Facilitating CaaS
We have been fiddling with IT infrastructure and Platform as a Service (PaaS). Bare metal
servers and VMs are the key computing resources in IT centers. Now with the successful
proliferation of containers, Container as a Service (CaaS) is becoming hugely popular and
tantalizing. There are certain issues with PaaS in traditional environments. CaaS is being
touted as the solution approach for surmounting the prickling issues of PaaS:

The high-level CaaS architecture

The Docker Platform – Distinct Capabilities and Use Cases

[263]

In the preceding figure, developers on the left-hand side are pulling and pushing
application content from a library of trusted and curated base images. Operations teams on
the right-hand side are monitoring and managing deployed applications and
infrastructures. The two teams can collaborate through a toolset that allows for a separation
of concerns while unifying the two teams through the application life cycle. The Docker
platform is that toolset empowering to build a CaaS that fits varying business requirements.

Adding new technology components is greatly simplified. Let's say a company wants to
add MongoDB to its portfolio. Now a certified image can be pulled down from Docker Hub
and tweaked as needed, and then quickly deployed. This container can then be offered to
developers for their consumption. Containers also allow for more experimentation. Since it
is so easy to build and tear down containers, a developer can quickly compare the features
of a stack component. For example, a developer wants to test the performance of three
different NoSQL database technologies and they can simply fire up the appropriate
container for each NoSQL technology without having to deal with the complexity of
managing the infrastructure and the underlying technology stack. The developer could then
run performance tests against each distinct container and select the appropriate one quickly.

Containers have the innate and incredible power to offer JVM-like portability in terms of
completely abstracting the underlying infrastructure. A true CaaS model is to pave the way
for the deployment of multi-container applications in multi-cloud environments.

Accelerating workload modernization
There are a variety of workloads in need of getting appropriately modernized and migrated
to powerful environments (clouds) to be readily found, bound, and used by worldwide
users for producing business-critical applications. Workloads typically represent software
applications, middleware, platforms, and so on. In the past, Service-Oriented Architecture
(SOA) was an enabler of software modernization through integration and composition. In
the recent past, MSA is being touted as the best-in-class approach for modernizing legacy,
monolithic, and massive applications. Applications are being fragmented accordingly in
order to be easily manageable. The development, deployment, and management
complexities are expected to go down with complex applications being expressed and
exposed as a collection of interoperable, portable, and composable microservices. This
means that application modules are being refactored and readied to be loosely or lightly
coupled, even decoupled. Further, applications are recommended to be stateless to be
scalable and independently deployable.

The Docker Platform – Distinct Capabilities and Use Cases

[264]

Some applications can take a "lift and shift" path to the cloud. This means that if some code
modifications are brought in, they can be significantly refactored to take the distinct
advantages of cloud centers. The applications are being redesigned, recoded, and
repurposed for the specific cloud platform. This gives the legacy application a new life and
a new purpose.

Containers are the highly optimized and organized runtime for hosting and delivering
microservices. Containers in conjunction with microservices are emerging as the most
crucial combination for the IT world in many respects. The use of containers to "wrap" or
containerize existing legacy applications comes with a few advantages. The containers take
care of the underlying platforms and infrastructures and the complexities associated with
them. Containerized applications are portable and enhances the speed in which legacy
modernization is performed. The cloud migration is smoothened through the utilization of
containers. Additional capabilities such as security, web and service enablement, and
governance can be attached to containerized applications easily and quickly. Further,
modernized legacy applications are a better fit for distributed computing.

A great way to modernize the current and conventional applications as we move them to
the cloud is to leverage technologies such as Kubernetes and Mesos instead of building all
of the Non-Functional Requirements (NFRs), such as scalability, security, and
sustainability.

Docker for stateful applications
Containers are typically stateless. However, for several applications, stateful compute
resources are needed. Docker does not natively provide storage volume management or
data persistence when porting these compute resources between hosts. The Flocker solution
by ClusterHQ addresses these needs and enables the containers to be used for stateful
applications, such as databases, by providing a framework for volume management and
data persistence when moving compute resources from one host to another. Flocker works
with all the major container managers (including Docker Swarm, Kubernetes, and Apache
Mesos).

Containers for edge computing
The security fear along with the lack of visibility and controllability is being touted as the
widely articulated and accepted drawback of cloud computing. Private clouds and
cloudlets are the viable options. Yet, they too face certain limitations. However, the recent
phenomenon of edge or fog computing has been pronounced as the most successful
computing paradigm for surmounting all the cloud weaknesses.

The Docker Platform – Distinct Capabilities and Use Cases

[265]

Edge computing is all about shifting the data processing and storage from the centralized
locations (cloud) to the distributed and decentralized environments (local). This means that
by bringing in compute, network, and storage competencies closer to the users, the Quality
of Service (QoS) attributes / the NFRs are readily and rewardingly accomplished.
Traditionally, all the computing and storage takes place in cloud environments (on-
premises and off-premises). However, certain scenarios such as real-time analytics and
faster responses insist for computing at the user end. It is not an exaggeration to say that the
QoS and experience goes up significantly when IT becomes people-centric, context-aware,
adaptive, real-time, and multimodal. Real-world and real-time applications and services
invariably pitch in for computing at the edges. There have been several architectural
complications even for edge computing, and now with the faster maturity and stability of
application and volume containers, edge computing innately gets the much-needed fillip.

Devices networking, service enablement, and clustering
Generally, edge devices such as implantables, wearables, portables, gateways, mobiles,
handhelds, consumer electronics, and robots may be primarily resource-constrained. Most
of these devices are not static and typically nomadic. Establishing seamless connectivity
among them for process, application, and data integration is a tedious and tough affair
indeed. Geo-distributed computation on edge devices, therefore, requires a lightweight,
intrinsically extensible, and intelligent platform to handle extremely fragile service
deployment, delivery, and management. Open Service Gateway interface (OSGi) is an
interesting framework for elegantly activating and administering resource-constrained,
embedded and connected devices, and their unique services. Any service or application can
be containerized and can be loaded with all kinds of participating devices. Then an instance
of the OSGi package can be containerized and hosted in a reasonably powerful device
stationed at the user environment in order to discover and manage all kinds of devices and
their service containers inside. This kind of setup enables centralized (from the cloud) as
well as decentralized monitoring, measurement, and management of device services. The
Dockerized platform is a proven mechanism to install, configure, manage, upgrade, and
terminate running services.

Device service registry for discovery
There may be thousands of edge devices in a particular environment. To discover, index,
and manage heterogeneous, dynamic, and distributed devices in a systematic manner, the
need for service registry and discovery capabilities is being insisted upon. The management
platform has to have this feature in order to find, bind, and leverage multiple devices in an
automated manner.

The Docker Platform – Distinct Capabilities and Use Cases

[266]

Fault tolerance
The platform must be fault-tolerant in order to guarantee high availability and reliability to
ensure business continuity.

Caching
Caching can be performed on the edge devices to enable faster access and to improve the
overall application performance. If Docker images are stocked and cached at the edge, then
application provisioning can be speeded up sharply. Another use case is to store application
data in a cache in order to remarkably increase application performance.

Bukhary Ikhwan Ismail and the team have built a testbed in order to examine Docker as one
of the candidate technologies for edge or fog computing. The testbed consists of a data
center and three edge sites to simulate the environment. At each edge site, a Docker
Registry is set up to store Docker images locally at the edge. A Docker daemon at the edge
site will be able to search and pull the Docker image from the Docker Registry. Docker
Swarm is configured on each edge site to manage multiple Docker daemons. Docker Swarm
acts as a clustering and orchestration tool. Based on the experimentation and evaluation,
Docker is found to be providing fast deployment, small footprint, and good performance,
which make it potentially a viable edge computing platform.

Marcel Grossmann and the team have developed Hypriot Cluster Lab (HCL). This is an
ARM-powered cloud solution utilizing Docker. Embedded systems and other Single Board
Computers (SBCs) have gained tremendous computing power. With devices increasingly
interconnected and web-enabled, a massive amount of machine data gets generated and the
growing need is to collect and crunch them quickly in order to squeeze out real-time
insights. As illustrated earlier, the era of edge/fog analytics is picking up fast. HCL can
provide the basis for a virtualized edge because it runs on the ARM architecture, which
behaves like a small data center and ships energy-efficient features by design.

The Docker use cases
Containerization is emerging as the way forward for the software industry as it brings forth
a newer and richer way of building and bundling any kind of software, shipping and
running them everywhere. That is the fast-evolving aspect of containerization that promises
and provides software portability, which has been a constant nuisance for IT developers
and administrators for many decades now. The Docker idea is flourishing here because of a
number of enabling factors and facets. This section is specially prepared for specifying the
key use cases of the Docker idea.

The Docker Platform – Distinct Capabilities and Use Cases

[267]

Integrating containers into workflows
Workflows are a widely accepted and used abstraction for unambiguously representing the
right details of any complicated and large-scale business and scientific applications and
executing them on distributed computing systems such as clusters, clouds, and grids.
However, workflow management systems have been largely evasive in conveying the
relevant information of the underlying environment on which the tasks inscribed in the
workflow are to run. This means that the workflow tasks can run perfectly on the
environment for which they were designed. The real challenge is to run the tasks across
multiple IT environments without tweaking and twisting the source codes of the required
tasks. Increasingly, the IT environments are heterogeneous with the leverage of disparate
operating systems, middleware, programming languages and frameworks, databases, and
so on. Typically, workflow systems focus on data interchange between tasks and are
environment-specific. A workflow, which is working fine in one environment, starts to
crumble when it is being migrated and deployed on different IT environments. All kinds of
known and unknown dependencies and incompatibilities spring up to denigrate the
workflows delaying the whole job of IT setup, application installation and configuration,
deployment, and delivery. Containers are the best bet for resolving this imbroglio once and
for all.

In the article, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue,
and Docker, Chao Zheng and Douglas Thain have done a good job of analyzing several
methods in order to experimentally prove the unique contributions of containers in
empowering workflow/process management systems. They have explored the performance
of a large bioinformatics workload on a Docker-enabled cluster and observed the best
configuration to be locally managed on containers that are shared between multiple tasks.

Docker for HPC and TC applications
According to Douglas M. Jacobsen and Richard Shane Canon, currently, containers are
being overwhelmingly used for the web, enterprise, mobile, and cloud applications.
However, there are questions being asked and doubts being raised on whether containers
can be a viable runtime for hosting technical and scientific computing applications.
Especially, there are many High-Performance Computing (HPC) applications yearning for
a perfect deployment and execution environment. The authors of this research paper have
realized that Docker containers can be a perfect answer for HPC workloads.

The Docker Platform – Distinct Capabilities and Use Cases

[268]

In many cases, users desire to have the ability to easily execute their scientific applications
and workflows in the same environment used for development or adopted by their
community. Some researchers have tried out the cloud option, but the challenges are many.
The users need to solve how they handle workload management, filesystems, and basic
provisioning. Containers promise to offer the flexibility of cloud-type systems coupled with
the performance of bare-metal systems. Furthermore, containers have the potential to be
more easily integrated into traditional HPC environments, which means that users can
obtain the benefits of flexibility without the added burden of managing other layers of the
system (that is, batch systems, filesystems, and so on).

Minh Thanh Chung and the team have analyzed the performance of VMs and containers for
high-performance applications and benchmarked the results that clearly show containers
are the next-generation runtime for HPC applications. In short, Docker offers many
attractive benefits in an HPC environment. To test these, IBM Platform LSF and Docker
have been integrated outside the core of Platform LSF and the integration leverages the rich
Platform LSF plugin framework.

We all know that the aspect of compartmentalization is for resource partitioning and
provisioning. This means that physical machines are subdivided into multiple logical
machines (VMs and containers). Now on the reverse side, such kinds of logical systems
carved out of multiple physical machines can be linked together to build a virtual
supercomputer to solve certain complicated problems. Hsi-En Yu and Weicheng Huang have
described how they built a virtual HPC cluster in the research paper, Building a Virtual HPC
Cluster with Auto Scaling by the Docker. They have integrated the autoscaling feature of
service discovery with the lightweight virtualization paradigm (Docker) and embarked on
the realization of a virtual cluster on top of physical cluster hardware.

Containers for telecom applications
Csaba Rotter and the team have explored and published a survey article with the title, Using
Linux Containers in Telecom Applications. Telecom applications exhibit strong performance
and high availability requirements; therefore, running them in containers requires
additional investigations. A telecom application is a single or multiple node application
responsible for a well-defined task. Telecom applications use standardized interfaces to
connect to other network elements and implement standardized functions. On top of the
standardized functions, a telecom application can have vendor-specific functionality. There
is a set of QoS and Quality of Experience (QoE) attributes such as high availability,
capacity, and performance/throughput. The paper has clearly laid out the reasons for the
unique contributions of containers in having next-generation telecom applications.

The Docker Platform – Distinct Capabilities and Use Cases

[269]

Efficient Prototyping of Fault Tolerant Map-Reduce Applications with Docker-Hadoop by Javier Rey
and the team advocated that distributed computing is the way forward for compute and
data-intensive workloads. There are two major trends. Data becomes big and there are
realizations that big data leads to big insights through the leverage of pioneering
algorithms, scripts, and parallel languages such as Scala, integrated platforms, new-
generation databases, and dynamic IT infrastructures. MapReduce is a parallel
programming paradigm currently used to perform computations on massive amounts of
data. Docker-Hadoop1 is a virtualization testbed conceived to allow the rapid deployment
of a Hadoop cluster. With Docker-Hadoop, it is possible to control the characteristics of the
node and run scalability and performance tests that otherwise would require a large
computing environment. Docker-Hadoop facilitates simulation and reproduction of
different failure scenarios for the validation of an application.

Regarding interactive social media applications, Alin Calinciuc and the team have come out
with a research publication titled as OpenStack and Docker: Building a high-performance IaaS
platform for interactive social media applications. It is a well-known truth that interactive social
media applications face the challenge of efficiently provisioning new resources in order to
meet the demands of the growing number of application users. The authors have given the
necessary description on how Docker can run as a hypervisor, and how the authors can
manage to enable the fast provisioning of computing resources inside of an OpenStack IaaS
using the nova-docker plugin that they had developed.

Summary
At this point in time, Docker is nothing short of an epidemic and every enterprising
business across the globe is literally obsessed with the containerization mania for their
extreme automation, transformation, and disruption. With the blossoming of hybrid IT, the
role of Docker-enabled containerization is steadily growing in order to smartly empower
IT-enabled businesses. In this chapter, we discussed the prime capabilities and
contributions of the Docker paradigm. We described how a typical software package can be
containerized. Further, you can come across industrial and enterprise-scale use cases.

Index

-
-P option
 used, for port binding 135

.

.dockerignore file 71

A
Active Directory (AD) 98
ADD instruction 58
Advanced Multi-Layered Unification Filesystem

(AUFS) 244
Amazon Web Services (AWS)
 about 15
 URL 15
Apache License
 reference 99
Application Armor (AppArmor) 238
Application Delivery Controllers (ADCs) 246
ARG instruction 59
AuthZ Plugins 242
automated build
 URL 89

B
base image 29
Behaviour-Driven Development (BDD) 259
Black Duck Hub 240
build instructions, Dockerfile
 .dockerignore file 71
 about 55
 ADD instruction 58
 ARG instruction 59
 CMD instruction 65
 COPY instruction 57
 ENTRYPOINT instruction 67

 ENV instruction 59
 environment variables 60
 EXPOSE instruction 62
 FROM instruction 55
 HEALTHCHECK instruction 69
 LABEL instruction 62
 MAINTAINER instruction 56
 ONBUILD instruction 70
 RUN instruction 63
 SHELL instruction 71
 STOPSIGNAL instruction 70
 USER instruction 60
 VOLUME instruction 61
 WORKDIR instruction 61
build process
 automating, for images 86, 87, 88, 89

C
capabilities 245
child image 72
Clair
 about 242
 URL 242
cluster 233
CMD instruction 65
comment line 54
Container as a Service (CaaS)
 about 116, 258
 connecting, to HTTP service 126
 envisaging 123
 facilitating 262
 HTTP server image, building 123, 125
 HTTP server image, executing as service 125
container networking
 overview 117, 119, 121, 123
container security
 best practices 243, 245

[271]

 deployment guidelines, securing 246
 future 247
container services
 container port, retrieving 130, 132
 container, binding to IP address 132
 containers port, publishing 128
 Docker host port, autogenerating 133
 exposing 127
 Network Address Translation (NAT), configuring

129

 port binding, with -P option 135
 port binding, with EXPOSE 135
containerization
 security scenario 226
 versus virtualization 11, 12
containerized application
 debugging 217
containers
 data, sharing between 152
 describing 250
 Docker containers, distinguishing 250
 importance 139
 linking 165, 167, 169, 173
 orchestration 173
continuous delivery
 about 261
 accurate testing 262
 application 261
 Container as a Service (CaaS), facilitating 262
Continuous Deployment (CD) 260
Continuous Development (CD) 100
Continuous Integration (CI) 100, 260
Control groups (cgroups) 216, 234
COPY instruction 57

D
data sharing, pitfalls
 avoiding 158
 data volume, undesirable effect 159, 161
 directory leaks 158
data sharing
 between containers 152
 between containers, practicality 155
 data volume, mounting from other containers

153

 data-only containers 152
data volume
 about 140, 143
 undesirable effect 159, 161
Database as a Service (DaaS) 259
Deep Container Inspection (DCI) 240
Denial of Service (DoS) attacks 216
DevOps
 enabling 259
directory deletion, challenges
 third-party images 159
 undeleted directories 159
directory leaks
 about 158
 recommendations 159
Discretionary Access Control (DAC) 237
docker attach command 222
Docker Community Edition (Docker CE) 14
Docker Compose
 Docker Registry, managing 109
Docker container
 about 30
 benefits 251, 252
 distinguishing 250
 executing 26
 process-level isolation 212
 security ramifications 228
 security-fulfilment features 232
 troubleshooting 26
 versus Virtual Machines (VMs) 229
Docker Content Trust (DCT) 240
Docker Engine
 installing 16
Docker Enterprise Edition (Docker EE) 13
docker exec command
 about 218
 reference 219
Docker for Mac
 URL 19
Docker for Windows
 URL 21
Docker Hub
 about 34, 76
 account, creating 78, 79
 images, pushing 79, 80, 81, 82, 85

[272]

 organizations, creating 91, 92
 private repositories 90
 REST API 92, 94
 teams, creating 91, 92
 URL 76, 86, 96
Docker images
 about 29, 30
 downloading 25
 searching 35
 working with 32, 33
docker logs command 222
Docker platform
 briefing 253
 competencies 254
 components, evolving 254
docker ps command 219
Docker Registry V2
 use cases 100
Docker Registry
 about 31, 96
 benefits 96
 executing 101, 104
 executing, on localhost with SSL certificate 104,

106

 executing, with restrictions 107
 features 97
 HTTP API support 111
 image, pushing 101, 104
 load balancing, consideration 109
 managing, with Docker Compose 108
 reference 96
 URL 86
 use cases 99
 webhook notifications, sending 110
docker stats command 221
Docker technology
 continuous delivery 261
 Continuous Deployment (CD) 260
 Continuous Integration (CI) 260
 DevOps, enabling 259
 implications 255
 infrastructure optimization 258
 modern enterprise development 255
 MSA 256
 workload modernization, accelerating 263

Docker Toolbox
 URL 23
docker top command 220
Docker Trusted Registry (DTR)
 about 98, 242
 URL 98
docker volume command
 create command 144
 inspect command 144
 ls command 144
 rm command 144
Docker, use cases
 about 266
 containers, integrating into workflows 267
 for High-Performance Computing (HPC)

application 267
 for telecom (TC) applications 267
docker-compose file
 reference 179
docker-compose tool, commands
 build 181
 bundle 181
 config 181
 create 181
 down 181
 events 181
 exec 181
 kill 181
 logs 181
 pause 181
 port 181
 ps 181
 pull 181
 push 181
 restart 181
 rm 181
 run 181
 scale 181
 start 181
 stop 181
 unpause 181
 up 181
 version 181
docker-compose tool
 commands 180

[273]

 docker-compose file 178
 installing 176
 options 180
 URL 176
 usage 181, 184, 187
 used, for orchestration 176
docker-compose.yml file
 redis service 184
 web service 184
Docker
 client-server communication 25
 installing, on Mac 18, 20
 installing, on Ubuntu 16
 installing, on Windows 21
 installing, with automated script 18
 setting up 23, 25
Dockerfile
 best practices 74
 best practices, URL 74
 build instructions 55
 comment line 54
 debugging 223
 parser directives 55
 syntax 53
Dockerization
 key drivers 9, 10
Dockerized application 35
Domain Name Service (DNS) 163

E
edge computing
 caching 266
 clustering 265
 device service registry, for discovery 265
 devices, networking 265
 fault tolerance 266
 service enablement 265
 with containers 264
ENTRYPOINT instruction 67
ENV instruction 59
envelope 111
environment variables
 about 60
 ENV 166
 NAME 166

 PORT 166
events command 221
EXPOSE instruction
 about 62
 used, for port binding 135
Extreme Programming (XP) 259

F
FROM instruction 55

G
GNU Privacy Guard (GPG) 17

H
HEALTHCHECK instruction 69
High-Performance Computing (HPC) applications

267

host data
 sharing 145, 147, 149
 sharing, practicality 150, 151
HTTP API
 in Docker Registry 111
Hyper-V container 14
Hypriot Cluster Lab (HCL) 266

I
image management 72, 73
images
 build process, automating 86, 87, 88, 89
 pushing, to Docker Hub 79, 80, 81, 82, 85
immutable image 233
immutable infrastructure
 about 233
 emerging security approaches 242
 resource isolation 233
 root privilege 235
 Security-Enhanced Linux (SELinux) 237
 trusted user control 235
inbuilt service discovery 163, 165
Information Technology (IT) 8, 139
infrastructure optimization
 about 258
 case study 259
integrated image building system 50, 53

[274]

Intel SGX
 used, for securing Linux Containers 239
interactive container
 changes, tracking 39
 containers, housekeeping 44
 Docker containers, controlling 41, 42, 44
 images, building from containers 46, 48
 launching, as daemon 48
 working with 37, 38
Interprocess Communication (IPC) namespaces
 about 212
 mount 212
 network 212
 PID 212
 user 212
 UTS 212
Intrusion Defense System (IDS) 107
Intrusion Protection System (IPS) 107

L
LABEL instruction 62
Label Schema 63

M
Mac
 Docker, installing 18
MAINTAINER instruction 56
Man-in-the-Middle (MitM) attack 241
Mandatory Access Control (MAC) 237
Microservices Architecture (MSA) 69, 174, 233
MSA
 case study 257
 Docker containers 256
Multi-Category Security (MCS) 237
Multi-Level Security (MLS) 237

N
namespaces 234
Nautilus 242
Network Address Translation (NAT)
 configuring, for containers 129
Network Attached Storage (NAS) 215
Node.js 182
Non-Functional Requirements (NFRs) 264
non-root containers 235

Notary 242

O
ONBUILD instruction 70
Open Service Gateway interface (OSGi) 265
Operating System (OS) 9
orchestration
 of containers 173
 with docker-compose tool 176
organizations
 creating, on Docker Hub 91, 92
 URL, for creating 91

P
parent image 72
Parent Process ID (PPID) 214
parser directives 55
Platform as a Service (PaaS) 262
plugins
 URL 144
port binding
 with -P option 135
 with EXPOSE 135
private repositories
 on Docker Hub 90
process-level isolation
 about 212
 containerized application, debugging 217
 Control groups (cgroups) 216
public repository code
 URL 90

Q
Quality Assurance (QA) teams 262
Quality of Experience (QoE) 268
Quality of Service (QoS) 265

R
Red Hat Enterprise Linux (RHEL) 243
Redis 182
resource isolation
 about 233
 resource control 234
 resource, accounting 234

REST API
 for Docker Hub 92, 94
robust notification system
 reference 97
Role Based Access Control (RBAC) 98
root privilege 235
RUN instruction 63

S
secure computing mode (seccomp) 239
Security-Enhanced Linux (SELinux)
 Docker images, loading 240
 for container security 237
 security implications 240
Service Computing (SC) 173
Service-Oriented Architecture (SOA) 263
SHELL instruction 71
SIGKILL signal 41
SIGTERM signal 41
Single Board Computers (SBCs) 266
Software-Defined Environment (SDE) 250
SSL certificate
 Docker Registry, executing on localhost 104,

106

STOPSIGNAL instruction 70
Storage Area Network (SAN) 215
storage drivers
 reference 104

T
teams
 creating, on Docker Hub 91, 92
telecom (TC) applications 268
Test-Driven Development (TDD) 259
The Update Framework (TUF)

 about 241
 for verification 241
 image, signing 241
Transport Layer Security (TLS) 180
Trusted Computing Base (TCB) 239
trusted user control
 about 235
 non-root containers 235

U
Ubuntu
 Docker, installing 16
Universal Control Plane (UCP) 98, 258
USER instruction 60

V
Virtual Ethernet (veth) Interface 121
Virtual Machine Monitors (VMMs) 258
Virtual Machines (VMs)
 versus Docker containers 229
virtualization
 versus containerization 11, 12
VOLUME instruction 61
volume management command 144

W
Windows containers
 Container Host 15
Windows Server container 14
Windows
 Docker, installing on 21
WORKDIR instruction 61
workload modernization
 accelerating 263
 containers, for edge computing 264
 Docker, for stateful applications 264

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Docker
	The key drivers for Dockerization
	Differentiating between containerization and virtualization
	The latest additions to the Docker platform
	Windows containers

	Installing the Docker Engine
	Installing Docker on Ubuntu
	Installing Docker using an automated script
	Installing Docker on the Mac
	Installing Docker on Windows

	Understanding the Docker setup
	Client-server communication

	Downloading the first Docker image
	Running the first Docker container
	Troubleshooting Docker containers

	Summary

	Chapter 2: Handling Docker Containers
	Clarifying Docker terms
	Docker images
	Docker containers
	Docker Registry

	Working with Docker images
	The Docker Hub
	Searching Docker images

	Working with an interactive container
	Tracking changes inside containers
	Controlling Docker containers
	Housekeeping containers
	Building images from containers
	Launching a container as a daemon

	Summary

	Chapter 3: Building Images
	Docker's integrated image building system
	A quick overview of the Dockerfile's syntax
	The comment line
	The parser directives

	The Dockerfile build instructions
	The FROM instruction
	The MAINTAINER instruction
	The COPY instruction
	The ADD instruction
	The ENV instruction
	The ARG instruction
	The environment variables
	The USER instruction
	The WORKDIR instruction
	The VOLUME instruction
	The EXPOSE instruction
	The LABEL instruction
	The RUN instruction
	The CMD instruction
	The ENTRYPOINT instruction
	The HEALTHCHECK instruction
	The ONBUILD instruction
	The STOPSIGNAL instruction
	The SHELL instruction
	The .dockerignore file

	A brief on the Docker image management
	Best practices for writing a Dockerfile
	Summary

	Chapter 4: Publishing Images
	Understanding Docker Hub
	Pushing images to Docker Hub
	Automating the build process for images
	Private repositories on Docker Hub
	Organizations and teams on Docker Hub
	The REST API for Docker Hub
	Summary

	Chapter 5: Running Your Private Docker Infrastructure
	Docker Registry
	Docker Registry use cases
	Running Docker Registry and pushing the image
	Running the Docker Registry on localhost with an SSL certificate
	Running Docker Registry with restrictions
	Managing Docker Registry with Docker Compose
	Load balancing consideration
	Webhook notifications
	Docker Registry HTTP API support
	Summary

	Chapter 6: Running Services in a Container
	A brief overview of container networking
	Envisaging container as a service
	Building an HTTP server image
	Running the HTTP server image as a service
	Connecting to the HTTP service

	Exposing container services
	Publishing a container's port – the -p option
	NAT for containers
	Retrieving the container port
	Binding a container to a specific IP address
	Autogenerating the Docker host port
	Port binding using EXPOSE and -P option

	Summary

	Chapter 7: Sharing Data with Containers
	Data volume
	The volume management command
	Sharing host data
	The practicality of host data sharing

	Sharing data between containers
	Data-only containers
	Mounting data volume from other containers
	The practicality of data sharing between containers

	Avoiding common pitfalls
	Directory leaks
	The undesirable effect of data volume

	Summary

	Chapter 8: Orchestrating Containers
	Docker inbuilt service discovery
	Linking containers
	Orchestration of containers
	Orchestrating containers using docker-compose
	Installing docker-compose
	The docker-compose file
	The docker-compose command
	Common usage

	Summary

	Chapter 9: Testing with Docker
	A brief overview of TDD
	Testing your code inside Docker
	Running the test inside a container
	Using a Docker container as a runtime environment

	Integrating Docker testing into Jenkins
	Preparing the Jenkins environment
	Automating the Docker testing process

	Summary

	Chapter 10: Debugging Containers
	Process-level isolation for Docker containers
	Control groups
	Debugging a containerized application

	The docker exec command
	The docker ps command
	The docker top command
	The docker stats command
	The Docker events command
	The docker logs command
	The docker attach command
	Debugging a Dockerfile
	Summary

	Chapter 11: Securing Docker Containers
	The security scenario in the containerization domain
	The security ramifications of Docker containers
	The security facets – virtual machines versus Docker containers
	The prominent security-fulfilment features of containers

	Immutable infrastructure
	Resource isolation
	Resource accounting and control

	The root privilege – impacts and best practices
	The trusted user control
	Non-root containers

	SELinux for container security
	Loading the Docker images and the security implications

	Image signing and verification using TUF
	The emerging security approaches

	The best practices for container security
	Secure deployment guidelines for Docker containers
	The future of Docker security

	Summary

	Chapter 12: The Docker Platform – Distinct Capabilities and Use Cases
	Describing containers
	Distinguishing Docker containers

	Briefing the Docker platform
	The evolving Docker platform components

	Implications of the Docker technology
	Modern enterprise development
	MSA and Docker containers
	Case study

	Infrastructure optimization
	Case study

	Enabling DevOps
	Continuous integration and continuous deployment
	Continuous delivery
	Accurate testing
	Facilitating CaaS

	Accelerating workload modernization
	Docker for stateful applications
	Containers for edge computing
	Devices networking, service enablement, and clustering
	Device service registry for discovery
	Fault tolerance
	Caching

	The Docker use cases
	Integrating containers into workflows
	Docker for HPC and TC applications
	Containers for telecom applications

	Summary

	Index

