
HAProxy in
Kubernetes
Supercharge Your Ingress Routing

HAProxy in
Kubernetes
Supercharge Your Ingress Routing

© 2020 HAProxy Technologies

https://www.haproxy.com/

Table of Contents

Introduction 3

The Ingress Pattern 5

Install the HAProxy Kubernetes Ingress Controller with Helm 13

Routing Traffic 22

TLS with Let's Encrypt 28

Multi-tenant Kubernetes Clusters 39

Kubernetes Deployment Patterns 56

Where Next 75

HAProxy in Kubernetes 2

Introduction
By now, it's clear that Kubernetes is a force within the
technology landscape, enabling sophisticated
orchestration of containerized services across a cluster of
servers. It's also clear that organizations need simple, yet
powerful, components to solve problems like routing
traffic into their Kubernetes clusters. From its inception,
the platform was built for this kind of extensibility, with the
foresight that users would desire ways to integrate their
favorite tools.

In this book, you will learn how to combine the power of
the HAProxy load balancer with Kubernetes. HAProxy has
been recast as a Kubernetes ingress controller, which is a
Kubernetes-native construct for traffic routing. The
controller is maintained as a distinct project, with a regular
release cycle, a growing community of developers, and an
increasing number of converts who favor it over other
ingress controllers.

As you read this book, consider your use case. Do you
require enhanced security? The HAProxy Kubernetes
Ingress Controller lets you enforce rate limits and you can
whitelist client IP addresses to better control access. Do
you want to supercharge your Kubernetes Ingress routing?
HAProxy is known as the world's fastest software load
balancer and has been benchmarked against alternatives
like NGINX, Envoy, and Traefik. Do you need detailed
observability in order to graph trends and make informed
decisions? HAProxy comes with a built-in Stats page that

HAProxy in Kubernetes 3

provides many counters and gauges for monitoring traffic,
and these are also exposed by a Prometheus endpoint.

With 20 years of ongoing development under its belt, the
HAProxy project is stronger than ever, and it's no surprise
that it's found a niche within the Kubernetes platform. We
hope that this book gives you all of the knowledge you
need to start using it. Community members like you drive
us to make it even better, so we welcome you to join us on
Slack, follow us on Twitter, and send us your questions!

 slack.haproxy.org/

twitter.com/haproxy

github.com/haproxytech/kubernetes-ingress/

HAProxy in Kubernetes 4

http://slack.haproxy.org/
https://twitter.com/haproxy
https://github.com/haproxytech/kubernetes-ingress/

The Ingress Pattern
Containers allow cross-functional teams to share a
consistent view of an application as it flows through
engineering, quality assurance, deployment and support
phases. The Docker CLI gives you a common interface
through which you can package, version, and run your
applications. What’s more, with orchestration platforms
like Kubernetes, the same tools can be leveraged to
manage services across isolated Dev, Staging and
Production environments.

This technology is especially convenient for teams working
with a microservices architecture, which produces many
small, but specialized, services. However, the challenge:
How do you expose your containerized services outside of
the container network?

In this chapter, you’ll learn about the HAProxy Kubernetes
Ingress Controller, which is built upon HAProxy, the world’s
fastest and most widely used software load balancer. As
you’ll see, using an ingress controller solves several tricky
problems and provides an efficient, cost-effective way to
route requests to your containers. Having HAProxy as the
engine gives you access to many of the advanced features
you know and love.

HAProxy in Kubernetes 5

https://github.com/haproxytech/kubernetes-ingress
https://github.com/haproxytech/kubernetes-ingress

Kubernetes Basics
First, let’s review the common approaches to routing
external traffic to a pod in Kubernetes. Since there are
many, thorough explanations available online that
describe Kubernetes in general, we will skip the basics. In
essence, Kubernetes consists of physical or virtual
machines—called nodes—that together form a cluster.
Within the cluster, Kubernetes deploys pods. Each pod
wraps a container (or more than one container) and
represents a service that runs in Kubernetes. Pods can be
created and destroyed as needed.

To maintain the desired state of the cluster, such as which
containers, and how many, should be deployed at a given
time, we have additional objects in Kubernetes. These
include ReplicaSets, StatefulSets, Deployments,
DaemonSets, and more. For our current discussion, let’s
skip ahead and get to the meat of the topic: accessing pods
via Services and Controllers.

HAProxy in Kubernetes 6

Services
A service is an abstraction that allows you to connect to
pods in a container network without needing to know a
pod’s location (i.e. which node is it running on?) or to be
concerned about a pod’s lifecycle. A service also allows you
to direct external traffic to pods. Essentially, it’s a primitive
sort of reverse proxy. However, the mechanics that
determine how traffic is routed depend on the service’s
type, of which there are four options:

● ClusterIP
● ExternalName
● NodePort
● LoadBalancer

When using Kubernetes services, each type has its pros
and cons. We won’t discuss ClusterIP because it doesn’t
allow for external traffic to reach the service—only traffic
that originates within the cluster. ExternalName is used to
route to services running outside of Kubernetes, so we
won’t cover it either. That leaves the NodePort and
LoadBalancer types.

NodePort
When you set a service’s type to NodePort, that service
begins listening on a static port on every node in the
cluster. So, you’ll be able to reach the service via any
node’s IP and the assigned port. Internally, Kubernetes
does this by using L4 routing rules and Linux IPTables.

HAProxy in Kubernetes 7

While this is the simplest solution, it can be inefficient and
also doesn’t provide the benefits of L7 routing. It also
requires downstream clients to have awareness of your
nodes’ IP addresses, since they will need to connect to
those addresses directly. In other words, they won’t be
able to connect to a single, proxied IP address.

LoadBalancer
When you set a service’s type to LoadBalancer, it exposes
the service externally. However, to use it, you need to have
an external load balancer. The external load balancer
needs to be connected to the internal Kubernetes network
on one end and opened to public-facing traffic on the
other in order to route incoming requests. Due to the
dynamic nature of pod lifecycles, keeping an external load
balancer configuration valid is a complex task, but this
does allow L7 routing.

HAProxy in Kubernetes 8

Oftentimes, when using Kubernetes with a
platform-as-a-service, such as with AWS’s EKS, Google’s
GKE, or Azure’s AKS, the load balancer you get is
automatic. It’s the cloud provider’s load balancer solution.
If you create multiple Service objects, which is common,
you’ll be creating a hosted load balancer for each one. This
can be expensive in terms of resources. You also lose the
ability to choose your own preferred load balancer
technology.

There needed to be a better way. The limited, and
potentially costly, methods for exposing Kubernetes
services to external traffic led to the invention of Ingress
objects and ingress controllers.

HAProxy in Kubernetes 9

Controllers
The official definition of a controller, not specific to ingress
controllers, is:

a control loop that watches the shared state of the cluster
through the apiserver and makes changes attempting to move
the current state towards the desired state.

For example, a Deployment is a type of controller used to
manage a set of pods. It is responsible for replicating and
scaling of applications. It watches the state of the cluster in
a continuous loop. If you manually kill a pod, the
Deployment object will take notice and immediately spin
up a new one so that it keeps the configured number of
pods active and stable.

Other types of controllers manage functions related to
persistent storage, service accounts, resource quotas, and
cronjobs. So, in general, controllers are the watchers,
ensuring that the system remains consistent. An ingress
controller fits right in. It watches for new services within
the cluster and is able to dynamically create routing rules
for them.

Ingress
An Ingress object is an independent resource, apart from
Service objects, that configures external access to a
service’s pods. This means you can define the Ingress later,
after the Service has been deployed, to hook it up to

HAProxy in Kubernetes 10

https://kubernetes.io/docs/reference/glossary/?fundamental=true

external traffic. That is convenient because you can isolate
service definitions from the logic of how clients connect to
them. This approach gives you the most flexibility.

L7 routing is one of the core features of Ingress, allowing
incoming requests to be routed to the exact pods that can
serve them based on HTTP characteristics such as the
requested URL path. Other features include terminating
TLS, using multiple domains, and, most importantly, load
balancing traffic.

In order for Ingress objects to be usable, you must have an
ingress controller deployed within your cluster that
implements the Ingress rules as they are detected. An
ingress controller, like other types of controllers,
continuously watches for changes. Since pods in
Kubernetes have arbitrary IPs and ports, it is the
responsibility of an ingress controller to hide all internal
networking from you, the operator. You only need to

HAProxy in Kubernetes 11

define which route is designated to a service and the
system will handle making the changes happen.

It’s important to note that ingress controllers still need a
way to receive external traffic. This can be done by
exposing the ingress controller as a Kubernetes service
with either type NodePort or LoadBalancer. However, this
time, when you add an external load balancer, it will be for
the one service only and the external load balancer’s
configuration can be more static.

Conclusion
In this chapter, you learned about Ingress objects and
ingress controllers and how they solve the problem of
routing external traffic into your cluster in a more flexible
and cost-effective way than exposing services with
NodePorts and LoadBalancers alone.

In the next chapter, you'll learn how to install the HAProxy
Kubernetes Ingress Controller so that you can benefit from
its blazing fast performance and mature set of features.

HAProxy in Kubernetes 12

Install the HAProxy
Kubernetes Ingress
Controller with Helm
Helm is the Kubernetes package manager, resembling apt
and yum, but born into the world of containers. It grew up
alongside Kubernetes and was introduced early on, at the
first KubeCon. Its job is to bundle up an application’s
Kubernetes resources into a package, called a chart,
making it convenient to store, distribute, version, and
upgrade those resources. That includes pods, services,
config maps, roles, service accounts, and any other type
available within the Kubernetes ecosystem.

Helm charts let you calibrate their behavior during install,
such as to toggle from a Deployment to a Daemonset or to
publish the ingress controller through an external load
balancer, simply by setting a parameter during the install,
which makes them perfect for delivering sophisticated
services with lots of moving parts. You can use the
HAProxy Kubernetes Ingress Controller Helm chart to
install the ingress controller, streamlining the install
process and making it easier to get started routing external
traffic into your cluster. Our ingress controller is built
around HAProxy, the fastest and most widely used load
balancer. Having that foundation means that there are
plenty of powerful features that you get right away, while
benefiting from HAProxy’s legendary performance.

HAProxy in Kubernetes 13

It’s easier to set up Helm than it used to be. You no longer
need to install Tiller, the component that had been
responsible for executing API commands and storing state
within your cluster. Helm version 3 removed Tiller and has
been rearchitected to use built-in Kubernetes constructs
instead. That has made Helm simpler to use. It also makes
it more secure due to its tighter integration with the
Kubernetes role-based access controls.
In this chapter, you’ll see how to install the HAProxy
Kubernetes Ingress Controller using Helm, and how to
customize its settings.

First, The Basics
Helm is now boringly simple to install. You need only to
download the pre-built Helm binary and store it on your
PATH. Unlike previous versions, there are no steps to
install any server-side components like Tiller into your
Kubernetes cluster prior to use. There are several good
options to get a small Kubernetes cluster up and running,
such as Minikube, MicroK8s and Kind.

Helm charts are stored in repositories. The main one is
Helm Hub, which is hosted by the Helm project. However,
you can add other, third-party repositories too. The
HAProxy Kubernetes Ingress Controller is available by
adding the HAProxy Technologies repository via the helm
repo add command, like this:

HAProxy in Kubernetes 14

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://microk8s.io/
https://github.com/kubernetes-sigs/kind
https://hub.helm.sh/
https://hub.helm.sh/

$ helm repo add haproxytech \

 https://haproxytech.github.io/helm-charts

"haproxytech" has been added to your repositories

The next step is to refresh your list of charts by using the
helm repo update command.

$ helm repo update

Hang tight while we grab the latest from your

chart repositories...

...Successfully got an update from the

"haproxytech" chart repository

...Successfully got an update from the "stable"

chart repository

Update Complete. ⎈ Happy Helming!⎈

Get an overview of available charts by invoking the helm
search repo command:

$ helm search repo haproxy

NAME CHART VERSION APP VERSION DESCRIPTION

haproxytech/kubernetes-ingress 0.7.3

1.3.2 A

This shows the latest version of a chart, but you can also
see older versions by including the versions argument. To
install this chart, run helm install.

HAProxy in Kubernetes 15

$ helm install haproxy \

 haproxytech/kubernetes-ingress

NAME: haproxy

LAST DEPLOYED: Tue Mar 10 14:57:41 2020

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

HAProxy Kubernetes Ingress Controller has been

successfully installed.

The install command takes two parameters. The first,
which I’ve set to haproxy, assigns a name to this release;
The second identifies the chart that you want to install.
Here’s how the Helm documentation defines a release:

A Release is an instance of a chart running in a Kubernetes
cluster. One chart can be installed many times into the same
cluster. And each time it is installed, a new release is created.

The concept of a release is what makes Helm a vital
addition to Kubernetes, since it lets you manage the
delivery cycle of an application in a more controlled, less
error-prone, way. Compare this to editing Kubernetes
YAML files by hand and you’ll no doubt appreciate the
safety this offers. Having a repository of versioned releases
gives you a way to handle upgrades and rollbacks with
ease, since Helm can track which version is currently

HAProxy in Kubernetes 16

https://helm.sh/docs/intro/using_helm/

deployed into your environment and can access older and
newer versions instantly.

Use the helm list command to check which releases are
deployed in your cluster:

$ helm list

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

haproxy default 1 2020-03-10

15:07:00.463855042 -0400 EDT deployed

kubernetes-ingress-0.7.3 1.3.2

Once a new version of the chart has been published to the
repository, you can get it by refreshing your list with helm
repo update and then invoking helm upgrade:

$ helm repo update

$ helm upgrade haproxy \

 haproxytech/kubernetes-ingress

Uninstall the chart with the helm uninstall command:

$ helm uninstall haproxy

release "mycontroller" uninstalled

After the installation, you can execute kubectl get service to
see that the ingress controller is running in your cluster:

HAProxy in Kubernetes 17

$ kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

haproxy-kubernetes-ingress NodePort

10.101.232.155 <none>

80:32371/TCP,443:30110/TCP,1024:32052/TCP 21h

Notice that, by default, the internal service ports 80, 443,
and 1024 are mapped to randomly assigned NodePorts.
You can change this to use hardcoded NodePort numbers
during the Helm install, as shown here:

$ helm install haproxy \

 haproxytech/kubernetes-ingress \

 --set controller.service.nodePorts.http=30000 \

 --set controller.service.nodePorts.https=30001 \

 --set controller.service.nodePorts.stat=30002

Or, you can install the controller as a DaemonSet instead
of a Deployment by setting the controller.kind field. At the
same time, set the controller.daemonset.useHostPort field to
true to expose ports 80, 443 and 1024 directly on the host.

$ helm install haproxy \

 haproxytech/kubernetes-ingress \

 --set controller.kind=DaemonSet

 --set controller.daemonset.useHostPort=true

HAProxy in Kubernetes 18

Or, use a cloud provider's load balancer in front of your
ingress controller by setting the field controller.service.type
to LoadBalancer:

$ helm install haproxy \

 haproxytech/kubernetes-ingress \

 --set controller.service.type=LoadBalancer

Forwarding Logs
You may also want to configure the controller to forward
its traffic logs to standard out on the container, which can
be done by setting the syslog-server field during the
installation.

$ helm install haproxy \

 haproxytech/kubernetes-ingress \

 --set-string

"controller.config.syslog-server=address:stdout\,

format:raw\, facility:daemon"

You can also forward logs to a remote Syslog server. Note
that you must escape commas that appear in the value by
prefixing them with a backslash.

HAProxy in Kubernetes 19

$ helm install mycontroller \

 haproxytech/kubernetes-ingress \

 --set-string

"controller.config.syslog-server=address:10.105.98

.88\, facility:local0\, level:info"

Any of the options listed in the controller’s documentation
can be set in this way. When you have many keys to set,
you can store them in a YAML file and then pass the name
of the file to the helm install command. For example,
suppose you created the following file and named it
overrides.yaml:

controller:

 config:

 ssl-redirect: "true"

 syslog-server: "address:10.105.98.88,

facility:local0, level:info"

 defaultTLSSecret:

 enabled: true

 secret: default/mycert

You would reference this file by using the values flag, as
shown:

$ helm install mycontroller \

 haproxytech/kubernetes-ingress \

 --values overrides.yaml

HAProxy in Kubernetes 20

https://github.com/haproxytech/kubernetes-ingress/blob/master/documentation/README.md

This approach allows you to save the file in version control
and makes the helm install command more concise and
the process more repeatable. Now that you’ve learned how
to use Helm, you are assured an error-proof deployment
of the HAProxy Kubernetes Ingress Controller!

Conclusion
In this chapter, we introduced the Helm chart for the
HAProxy Kubernetes Ingress Controller, making it easier to
begin routing traffic into your cluster using the powerful
HAProxy load balancer. Helm facilitates deploying software
by providing streamlined package management. You can
use it to customize features like SSL termination and log
forwarding.

HAProxy in Kubernetes 21

Routing Traffic
Now that you have the ingress controller installed, it’s time
to spin up a sample application and add an Ingress
resource that will route traffic to your pod. You will create
the following:

● A Deployment to launch your pods
● A Service to group your pods
● An Ingress that defines routing to your pods

Before setting up an application, you can see that the
default service returns 404 Not Found responses for all
routes. If you are using Minikube, you can get the IP of the
cluster with the minikube ip command.

Each of the ingress controller's ports is mapped to a
NodePort port via a Service object. After installing the
ingress controller, you can use kubectl get svc to see the
ports that were mapped:

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

haproxy-kubernetes-ingress

NodePort 10.104.180.6 <none>

80:30267/TCP,443:31566/TCP,1024:30256/TCP 4s

In this instance, the following ports were mapped:

HAProxy in Kubernetes 22

● Container port 80 to NodePort 30279
● Container port 443 to NodePort 30775
● Container port 1024 to NodePort 31912

Use curl to send a request with a Host header of foo.bar
and get back a 404 response:

$ curl -I -H 'Host: foo.bar' \

 'http://192.168.99.100:30279'

HTTP/1.1 404 Not Found

date: Thu, 27 Jun 2019 21:45:20 GMT

content-length: 21

content-type: text/plain; charset=utf-8

Launch the Application
Let’s launch a sample application. Prepare the Deployment
object YAML file by creating a file named
deployment.yaml and add the following markup. This will
deploy two replicas of the sample application:

HAProxy in Kubernetes 23

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 run: app

 name: app

spec:

 replicas: 2

 selector:

 matchLabels:

 run: app

 template:

 metadata:

 labels:

 run: app

 spec:

 containers:

 - name: app

 image: jmalloc/echo-server

 ports:

 - containerPort: 8080

Next, define a Service object YAML file named
service.yaml to group the pods. Notice that you can
define annotations in the Service that enable health
checks, forward the client's IP address to the pod, and
choose the load balancing algorithm.

HAProxy in Kubernetes 24

apiVersion: v1

kind: Service

metadata:

 labels:

 run: app

 name: app

 annotations:

 haproxy.org/check: "enabled"

 haproxy.org/forwarded-for: "enabled"

 haproxy.org/load-balance: "roundrobin"

spec:

 selector:

 run: app

 ports:

 - name: port-1

 port: 80

 protocol: TCP

 targetPort: 8080

Add an Ingress
Next, define an Ingress object YAML file named
ingress.yaml. This file controls how external traffic will be
routed to your pods. It finds the pods by the Service that
we used to group them.

HAProxy in Kubernetes 25

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: web-ingress

 namespace: default

spec:

 rules:

 - host: foo.bar

 http:

 paths:

 - path: /

 backend:

 serviceName: app

 servicePort: 80

Apply the configuration with the kubectl apply command:

$ kubectl apply -f deployment.yaml

$ kubectl apply -f service.yaml

$ kubectl apply -f ingress.yaml

The ingress controller will automatically detect the Ingress
and add a new route for it to HAProxy's underlying
configuration. This will allow all traffic for http://foo.bar/
to go to our application. Next, define a ConfigMap to tune
other settings. Use curl again and you'll get a successful
response:

HAProxy in Kubernetes 26

$ curl -I -H 'Host: foo.bar' \

 'http://192.168.99.100:30279'

HTTP/1.1 200 OK

content-type: text/plain

date: Thu, 27 Jun 2019 21:46:30 GMT

content-length: 136

Conclusion
In this chapter, you learned how to deploy an application
to Kubernetes and publish it using an Ingress object. By
allowing routing rules to be defined separately from
Deployment and Service objects, you are able to publish
applications later and with a greater degree of control. You
can even delete the Ingress to un-publish the application
without affecting the pods themselves.

HAProxy in Kubernetes 27

TLS with Let's Encrypt
When it comes to TLS in Kubernetes, the first thing to
appreciate when you use the HAProxy Ingress Controller is
that all traffic for all services travelling to your Kubernetes
cluster passes through HAProxy. Requests are then routed
towards the appropriate backend services depending on
metadata in the request, such as the Host header. So, by
enabling TLS in your ingress controller, you're adding
secure communication to all of your services at once.
HAProxy is known for its advanced support of the
important performance-oriented features available in TLS.

In this chapter, you'll learn how to configure TLS in the
ingress controller using a self-signed certificate. Then,
you'll see how to get a certificate automatically from Let's
Encrypt, which can be used in Production. Using Let's
Encrypt requires version 1.4.6 or later of the HAProxy
Kubernetes Ingress Controller.

A Default TLS Certificate
When you install the ingress controller with Helm, it
creates a self-signed TLS certificate, which is useful for
non-production environments. Run kubectl get secret to see
that it exists:

HAProxy in Kubernetes 28

https://istlsfastyet.com/

$ kubectl get secret

NAME TYPE DATA AGE

haproxy-kubernetes-ingress-default-cert

kubernetes.io/tls 2 2m22s

View the certificate's details by running the same
command with the name of the secret and the output
parameter set to yaml:

$ kubectl get secret \

 haproxy-kubernetes-ingress-default-cert -o yaml

apiVersion: v1

data:

 tls.crt: ABCDEFG123456...

 tls.key: ABCDEFG123456...

Straight away, you can access your services externally over
HTTPS using this certificate. However, you'll want to
replace it with your own, trusted one for production
environments, which you can do by creating a new Secret
object in Kubernetes that contains your certificate and
then updating the ingress controller to use it.

To see how it works, let's create a self-signed certificate of
our own. Here's how to create a self-signed certificate
using OpenSSL for a website named test.local:

HAProxy in Kubernetes 29

$ openssl req -x509 \

 -newkey rsa:2048 \

 -keyout test.local.key \

 -out test.local.crt \

 -days 365 \

 -nodes \

 -subj "/C=US/ST=Ohio/L=Columbus/O=MyCompany/

CN=test.local"

Use the kubectl create secret command to save your TLS
certificate and key as a Secret in the cluster. The key and
cert fields reference local files where you've saved your
certificate and private key.

$ kubectl create secret tls test-cert \

 --key="test.local.key" \

 --cert="test.local.crt"

When you installed the HAProxy Ingress Controller, it also
generated an empty ConfigMap object named
haproxy-kubernetes-ingress, where haproxy is the name
you gave when installing the Helm chart. Update this
ConfigMap with a field named ssl-certificate that points to
the Secret object you just created.

Did You Know? The HAProxy Ingress Controller depends
on having a ConfigMap defined. You can add and delete
fields from it, but you should not delete it from the cluster.

HAProxy in Kubernetes 30

Here is an example ConfigMap object that sets the
ssl-certificate field to the Secret named my-cert. Use the
kubectl apply -f [FILE] command to update the ConfigMap
in your cluster.

apiVersion: v1

kind: ConfigMap

metadata:

 name: haproxy-kubernetes-ingress

 namespace: default

data:

 ssl-certificate: "default/test-cert"

Now, when you access your services over HTTPS, they'll
use this TLS certificate.

Choose a Different
Certificate Per Ingress
The benefit of an ingress controller is that it proxies traffic
for all of the services you'd like to publish externally. The
certificate you added to the ConfigMap applies across the
board, but you can override it with a different certificate
for each service. In that case, HAProxy uses SNI to find the
right certificate.

Create a new certificate to use for a particular domain,
such as api.test.local. Create a new certificate using
OpenSSL:

HAProxy in Kubernetes 31

$ openssl req -x509 \

 -newkey rsa:2048 \

 -keyout api.test.local.key \

 -out api.test.local.crt \

 -days 365 \

 -nodes \

 -subj "/C=US/ST=Ohio/L=Columbus/O=MyCompany/

CN=api.test.com"

Next, add the certificate and key files to your cluster by
creating a Secret object:

$ kubectl create secret tls api-test-cert \

 --key="api.test.local.key" \

 --cert="api.test.local.crt"

Then, define an Ingress object where the rules stanza
applies to any request for api.test.local. Any requests for
that hostname will be routed to the backend service
named api-service. We're also defining a tls stanza that
configures which TLS certificate to use for this service. Its
secretName field points to our new Secret object.

HAProxy in Kubernetes 32

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: api-ingress

 namespace: default

spec:

 rules:

 - host: api.test.local

 http:

 paths:

 - path: /

 backend:

 serviceName: api-service

 servicePort: 80

 tls:

 - secretName: api-test-cert

 hosts:

 - api.test.local

Apply this with the kubectl apply -f [FILE] command and
you'll see that requests for api.test.local use this certificate
rather than the one you set in the ConfigMap. Note that
you can update your /etc/hosts file to resolve test.local
and api.test.local to your ingress controller's IP address.
Technically, HAProxy chooses the correct certificate by
using SNI, which means that once the certificate is added
by one Ingress, HAProxy will use it for other routes too if
they match that hostname.

HAProxy in Kubernetes 33

Let's Encrypt Certificates
Now that you've seen how to define which TLS certificate
to use for a particular service, you can take this a step
further by having the Secret populated automatically with
a certificate from Let's Encrypt. There's an open-source
tool called cert-manager that you'll install into your cluster
to handle communicating with the Let's Encrypt servers.

First, be sure to deploy your cluster with a public IP
address, such as by using a managed Kubernetes service
like Amazon EKS and then deploying the ingress controller
with a service type of LoadBalancer, which will create a
cloud load balancer in front of the cluster that has a public
IP. Then, create a DNS record that resolves your domain
name to that IP address. You can use a service like NS1 to
set up a DNS record, once you've purchased a domain
from a domain registrar. Let's Encrypt will need access to
your service at its domain name address to send the ACME
challenges. In particular, Let's Encrypt expects your
website to be listening on port 80 and will issue certificates
that match your domain name.

Next, deploy cert-manager into your cluster:

$ kubectl apply --validate=false -f \

https://github.com/jetstack/cert-manager/releases/

download/v0.15.1/cert-manager.yaml

HAProxy in Kubernetes 34

https://cert-manager.io/docs/installation/kubernetes/
https://cert-manager.io/docs/installation/kubernetes/

Then, deploy a cert-manager issuer, which is responsible
for getting certificates from Let's Encrypt and validating
your domain by answering ACME HTTP-01 challenges.
Here's an example YAML file to create a ClusterIssuer
that's taken, in part, from the cert-manager
documentation:

apiVersion: cert-manager.io/v1alpha2

kind: ClusterIssuer

metadata:

 name: letsencrypt-staging

spec:

 acme:

 email: myemail@company.com

 server:

https://acme-staging-v02.api.letsencrypt.org/direc

tory

 privateKeySecretRef:

 # Secret used to store the account's private

key.

 name: example-issuer-account-key

 # Add a ACME HTTP01 challenge solver

 solvers:

 - http01:

 ingress: {}

In this example, you are creating a ClusterIssuer that can
set up certificates for ingress controllers regardless of the
namespace in which they run. It is configured to use the
Let's Encrypt staging server, which is the best place to work
out your implementation without contacting the Let's
Encrypt production servers. Later, you can create a

HAProxy in Kubernetes 35

https://letsencrypt.org/docs/challenge-types/

different ClusterIssuer that has its server field set to the
real Let's Encrypt server,
https://acme-v02.api.letsencrypt.org/directory.

Next, add an Ingress object that includes the cert-manager
annotation, which points to your ClusterIssuer. The
cert-manager program will communicate with Let's Encrypt
and store the certificate it receives in the Secret referred to
by the secretName field in the tls stanza.

HAProxy in Kubernetes 36

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 annotations:

 # add an annotation indicating the issuer to

use

 cert-manager.io/cluster-issuer:

letsencrypt-staging

 name: mysite-ingress

 namespace: default

spec:

 rules:

 - host: mysite.com

 http:

 paths:

 - path: /

 backend:

 serviceName: mysite-service

 servicePort: 80

 tls:

 - secretName: mysite-cert

 hosts:

 - mysite.com

You can specify more than one host in the rules and tls
sections to handle different domain names, such as
mysite.com and www.mysite.com. A temporary
cert-manager pod and ingress resource will be created for
you to handle the HTTP-01 challenge, but are removed
afterwards. You can inspect this pod's logs in case of any
trouble:

HAProxy in Kubernetes 37

$ kubectl logs -f <cert-manager-pod> -n

cert-manager

Once set up, you won't have to worry about manually
installing certificates again!

Conclusion
In this chapter, you learned how to configure TLS with the
HAProxy Ingress Controller, making it easy to provide
secure communication for all of the clients accessing your
Kubernetes services. To take it a step further, you can use
cert-manager to configure Let's Encrypt certificates
automatically.

HAProxy in Kubernetes 38

Multi-tenant
Kubernetes Clusters
It’s a rare bird, a Kubernetes cluster that serves only a
single tenant. In the wild, you’ll likely encounter clusters
where tenants are packed in close: QA and Dev, Team A
and Team B, Java application and .NET
application—environments, teams, and technology stacks
declare their stakes on resources. It’s essential that you
plan ahead for multiple tenants, set up the proper
namespaces, define access controls, set resource quotas,
and configure ingress routing.

Sharing resources in a Kubernetes cluster is a logical way
to save money on the cost of infrastructure. In this
chapter, we’ll share tips for setting up multiple tenants
and, in particular, how to configure the HAProxy
Kubernetes Ingress Controller to serve traffic to multiple
tenants.

Namespaces are Key
A Kubernetes namespace groups objects inside of a shared
scope, providing a sandbox where objects created by one
tenant don’t overlap with objects created by another. Take
for example a Dev and a QA environment. You can host
both environments inside of a single Kubernetes cluster
where they can share server resources, yet remain
oblivious to one another. Each environment, or “tenant”,

HAProxy in Kubernetes 39

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

can duplicate your entire application stack. Building walls
around each tenant avoids accidentally exposing an
experimental Dev service within the QA environment, or
deleting the wrong object, or applying a breaking change
to the wrong application

Declare a new namespace by adding a YAML file that
defines a Namespace object, like this:

apiVersion: v1

kind: Namespace

metadata:

 name: dev

In this instance, the namespace is named dev. Use kubectl
to apply this change to your cluster:

$ kubectl apply -f dev-namespace.yaml

Once created, add objects to the namespace by
referencing its name within the object’s metadata. In the
following example, a ConfigMap object is added to the dev
namespace:

HAProxy in Kubernetes 40

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-configmap

 namespace: dev

data:

 foo: 'bar'

Only objects within the same dev namespace will have
access to this ConfigMap. Also, when using the kubectl
command-line utility to view objects, you will need to
include the --namespace argument or else the returned list
will come up empty:

$ kubectl get configmaps --namespace=dev

Use the kubectl get namespaces command to view all of
your defined namespaces:

HAProxy in Kubernetes 41

$ kubectl get namespaces

NAME STATUS AGE

default Active 4m33s

dev Active 2m38s

Managing User Access to a
Namespace
Once you’ve defined a namespace, you can configure
role-based access control (RBAC) to limit who has access to
it. Out of the box, there are already a few roles defined,
including admin, edit, and view. In the following sections, a
new user login is created and given the edit role in the dev
namespace, which gives it read/write access to that
namespace only.

Add a RoleBinding
To begin granting access to a user, first create a new
RoleBinding object that assigns the edit role to a user
named bob.

HAProxy in Kubernetes 42

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-edit

 namespace: dev

subjects:

- kind: User

 name: bob # permissions for a user named bob

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: edit # read/write access

 apiGroup: rbac.authorization.k8s.io

The edit ClusterRole is already defined and can be scoped
to the dev namespace by setting the namespace metadata
field. Who is Bob? It’s a user who isn’t represented as an
object per se (there is no User object in Kubernetes), but
who will authenticate to the cluster using a client certificate
that contains a CN field set to bob. You can also grant
permissions to a group of users. In the following
RoleBinding object, a group named dev-group is granted
edit access to the dev namespace:

HAProxy in Kubernetes 43

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-edit

 namespace: dev

subjects:

- kind: Group

 name: dev-group # permissions for the group

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: edit # read/write access

 apiGroup: rbac.authorization.k8s.io

For group permissions, when you create the client
certificate, its O field must match the subject name, which
is dev-group in this case. Use kubectl to create the object in
Kubernetes:

$ kubectl apply -f dev-rolebinding.yaml

Create a Client Certificate
The next step is to create a certificate signing request (CSR)
for a new client certificate. There are a number of tools
that you can use to do this, such as the openssl
command-line utility. In the following example, I use
openssl to create a CSR for a user named bob with a group
of dev-group to demonstrate setting the CN and O fields:

HAProxy in Kubernetes 44

https://kubernetes.io/docs/concepts/cluster-administration/certificates/

Create a CSR with CN=bob and O=dev-group

This creates bob.csr and bob.key

$ openssl req -newkey rsa:2048 -nodes \

 -keyout bob.key -out bob.csr \

 -subj "/CN=bob/O=dev-group"

Next, you’ll need to sign the CSR with your cluster’s CA
certificate in order to get a client certificate. I’m using
Minikube in my test lab, so I could sign the certificate
signing request with Minikube’s CA certificate and key,
which can be found in the .minikube directory. I would use
the following OpenSSL command to create a client
certificate named bob.crt.

Sign it with the cluster's CA certificate

This creates bob.crt

$ openssl x509 -req -in bob.csr \

 -CA ~/.minikube/ca.crt \

 -CAkey ~/.minikube/ca.key -CAcreateserial \

 -out bob.crt -days 1000

Another way to sign the CSR and get a bob.crt file is to use
the Kubernetes Certificates API, wherein you create a
CertificateSigningRequest object. You will need to store the
CSR data in a YAML file as a base64-encoded string and
then apply the YAML file to your cluster, so it’s easiest to
do it from the command line, like this:

HAProxy in Kubernetes 45

$ cat <<EOF | kubectl apply -f -

apiVersion: certificates.k8s.io/v1beta1

kind: CertificateSigningRequest

metadata:

 name: bob

spec:

 request: $(cat bob.csr | base64 | tr -d '\n')

 usages:

 - digital signature

EOF

Then, approve the CSR:

$ kubectl certificate approve bob

You can then download the signed certificate with the
kubectl get csr command:

$ kubectl get csr bob -o \

 jsonpath='{.status.certificate}' |

 base64 --decode > bob.crt

Add a Cluster Context
Next, add a new cluster context that lets you log in as bob,
using the bob certificate.

HAProxy in Kubernetes 46

$ kubectl config set-credentials bob \

 --client-certificate=bob.crt \

 --client-key=bob.key

$ kubectl config set-context minikube-bob \

 --cluster=minikube --user=bob

$ kubectl config use-context minikube-bob

You’re now using the minikube-bob context to access your
Minikube Kubernetes cluster. If you try accessing or
creating objects in the dev namespace, it will work, but
you’ll get an error if you try to access an object in any other
namespace.

$ kubectl get pods --namespace=dev

NAME READY STATUS RESTARTS AGE

app-66d9457bf5-vpbnw 1/1

Running 1 22h

$ kubectl get pods --namespace=default

Error from server (Forbidden): pods is forbidden:

User "bob" cannot list resource "pods" in API

group "" in the namespace "default"

You can switch back to the normal Minikube context, which
has admin privileges, like this:

HAProxy in Kubernetes 47

$ kubectl config use-context minikube

An Ingress Controller that
Watches a Namespace
Now that you’ve created a namespace and given limited
access to it, let’s see how to manage HTTP traffic going into
the environment by levering the HAProxy Kubernetes
Ingress Controller.

Be sure to switch back to the normal admin context before
going further. Without any special configuration, the
HAProxy Kubernetes Ingress Controller will watch over all
namespaces. When a pod is added or removed anywhere
within the cluster, the controller is notified, which means
that any of your teams can use it for ingress traffic routing.
That’s great news if you want to set up routing quickly for
all of your teams (i.e. tenants). However, there are a few
reasons why you may decide to deploy multiple ingress
controllers.

For one thing, by creating multiple ingress controllers, you
can apply a walled garden approach for each tenant. By
creating a distinct ingress controller for each one, you can:

1. collect distinct HAProxy metrics per tenant, such as
request rates and error rates.

2. set rate limits per tenant to prevent “noisy
neighbors” syndrome.

HAProxy in Kubernetes 48

3. define custom timeouts per tenant to
accommodate varying SLAs.

4. reuse the same URL paths to keep your
applications consistent between tenants.

When you deploy an HAProxy Kubernetes Ingress
Controller using Helm, add --namespace-whitelist to the
controller.extraArgs field to set the namespace to watch, as
shown:

$ helm install onlydev \

 haproxytech/kubernetes-ingress \

 --set-string

"controller.extraArgs={--namespace-whitelist=dev}"

You can specify more than one namespace to watch:

$ helm install onlydev \

 haproxytech/kubernetes-ingress \

 --set-string

"controller.extraArgs={--namespace-whitelist=dev-t

eam-a,--namespace-whitelist=dev-team-b}"

This Ingress object is created within the dev namespace
and, therefore, is picked up automatically by an ingress
controller that has its whitelist set to dev:

HAProxy in Kubernetes 49

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: app-ingress

 namespace: dev

spec:

 rules:

 - http:

 paths:

 - path: /app-service

 backend:

 serviceName: app-service

 servicePort: 80

You could create an identical Ingress object in your qa
namespace, but it won’t route through this particular
ingress controller because its namespace is different. Each
ingress controller can be exposed on a unique IP address
so that tenants can be given their own subdomain. It won’t
be possible for one tenant’s traffic to mix with that of
another.

Note that it would still be possible for services running in
one namespace to call services running in another.
Although we won't cover it here, you can use Network
Policy objects to restrict access between services inside the
cluster.

HAProxy in Kubernetes 50

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

An Ingress Controller that
You Target
Another way to manage ingress routing is to use ingress
classes. Whereas --namespace-whitelist tells the ingress
controller to watch a specific namespace for changes, an
ingress class flips that responsibility around, giving an
Ingress object a chance to target the controller it wants by
name. To set this up, add class to the list of arguments
when defining your ingress controller. Here, the
--ingress.class argument is set to intranet:

$ helm install intranet \

 haproxytech/kubernetes-ingress \

 --set controller.ingressClass=intranet

Maybe this ingress controller exposes services only to the
company’s intranet. You may have another ingress
controller that has a class of public, exposing services to
external customers, for example. An Ingress object targets
its desired controller by setting its haproxy.org/ingress.class
annotation, as shown:

HAProxy in Kubernetes 51

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: app-ingress-internal

 namespace: default

 annotations:

 haproxy.org/ingress.class: "intranet"

spec:

 rules:

 - http:

 paths:

 - path: /app-service

 backend:

 serviceName: app-service-internal

 servicePort: 80

This puts the control into the hands of your service
developers. They can choose which ingress controller to
use and it gives them a greater degree of autonomy. You
can even use this with multiple tenants, if you don’t mind
giving them a common IP address for accessing their
services.

Resource Quotas
As a final tip, each namespace can be assigned its own
allotment of resources. For example, QA might be
allocated more or less CPU and memory than Dev. This lets
you prioritize which tenants receive the resources, or lets
you simply keep things equal for everybody. If you don’t do
this, then you risk one tenant utilizing more than their fair

HAProxy in Kubernetes 52

share and leaving other tenants squabbling over the
scraps.

It is essential then that every pod defines how much CPU
and memory it needs so that Kubernetes knows when a
tenant is about to exceed its resource limits. We won’t go
into detail about this, but this is accomplished by setting
requests and limits on a pod, which you can learn more
about on theManaging Compute Resources page. You can
also create defaults for a namespace, in case a pod doesn’t
set its own limits, by creating a LimitRange object.

Let’s cover how to set the resource quota for a namespace,
which determines the cap on resources. If a tenant
requests more resources than what you’ve allowed here,
their objects won’t be created. Resource quotas let you
restrict:

● the total CPU that can be used
● the total memory that can be used
● the amount of harddrive storage that can be used
● the number of objects that can be created

The following ResourceQuota object sets limits for CPU
and memory in the dev namespace:

HAProxy in Kubernetes 53

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/resource-quotas/

apiVersion: v1

kind: ResourceQuota

metadata:

 name: dev-resources

 namespace: dev

spec:

 hard:

 requests.cpu: "3"

 requests.memory: 40Gi

 limits.cpu: "4"

 limits.memory: 50Gi

Use kubectl to apply the quota:

$ kubectl apply -f dev-quota.yaml

Then, you can view how much has been used so far:

$ kubectl describe resourcequota dev-resources \

 -n dev

Name: dev-resources

Namespace: dev

Resource Used Hard

-------- ---- ----

limits.cpu 0 4

limits.memory 0 50Gi

requests.cpu 500m 3

requests.memory 50Mi 40Gi

HAProxy in Kubernetes 54

Quotas will help keep tenants from overusing resources
and allows you to see how much a particular tenant has
used so far, which is great when planning whether you
need to expand the cluster. It’s a vital step when planning
for multiple tenants.

Conclusion
In this chapter, you learned some tips for managing
multiple tenants that share resources within a Kubernetes
cluster. The HAProxy Kubernetes Ingress Controllers lets
you whitelist certain namespaces to watch so that each
namespace can be routed through a specific controller.
You can also target specific ingress controllers by using
ingress classes.

When setting up multiple tenants, it pays to configure
RBAC and to give teams access to only their respective
namespaces, which you can accomplish by using client
certificates. You should also consider setting resource
quotas to prevent a tenant from using more than their fair
share of CPU and memory.

HAProxy in Kubernetes 55

Kubernetes
Deployment Patterns
In this chapter, we'll cover how to plan for upgrades to
your applications that run in your Kubernetes cluster. It
can be important to plan for this upfront so that when the
time to upgrade comes, you'll be well prepared.
Kubernetes accommodates a wide range of deployment
methods. We’ll cover two that guarantee a safe rollout
while keeping the ability to revert if necessary:

● Rolling updates have first-class support in
Kubernetes and allow you to phase in a new
version gradually;

● Blue-green deployments avoid having two versions
at play at the same time by swapping one set of
pods for another.

The HAProxy Kubernetes Ingress Controller is powered by
the world’s fastest and most widely used software load
balancer. Known to provide the utmost performance,
observability, and security, it is the most efficient way to
route traffic into a Kubernetes cluster. It automatically
detects changes within your Kubernetes infrastructure and
ensures accurate distribution of traffic to healthy pods. Its
design prevents downtime even when there are rapid
configuration changes. It supports both deployment
patterns and reliably exposes the correct pods to clients.

HAProxy in Kubernetes 56

Rolling Updates
A rolling update offers a way to deploy the new version of
your application gradually across your cluster. It replaces
pods during several phases. For example, you may replace
25% of the pods during the first phase, then another 25%
during the next, and so on until all are upgraded. Since the
pods are not replaced all at once, this means that both
versions will be live, at least for a short time, during the
rollout.

Did You Know? Because a rolling update creates the
potential for two versions of your application to be
deployed simultaneously, make sure that any upstream
databases and services are compatible with both versions.

This deployment model enjoys first-class support in
Kubernetes with baked-in YAML configuration options.
Here’s how it works:

1. Version 1 of your application is already deployed.
2. Push version 2 of your application to your

container image repository.
3. Update the version number in the Deployment

object’s definition.
4. Apply the change with kubectl.
5. Kubernetes staggers the rollout of the new version

across your pods.
6. The HAProxy Kubernetes Ingress Controller detects

when the new pods are live. It automatically

HAProxy in Kubernetes 57

updates its proxy configuration, routing traffic
away from the old pods and towards the new ones.

A rolling update dodges downtime by replacing existing
pods incrementally. If the new pods introduce an error
that stops them from starting up, Kubernetes will pause
the rollout. Also, a rolling update ensures that some pods
are always up, so there’s no downtime. Kubernetes keeps a
minimum number of pods running during the rollout.
However, this requires that you’ve added a readiness
check to your pods so that Kubernetes knows when they
are truly ready to receive traffic.

Deploy the Original Application
Kubernetes enables rolling updates by default. An update
begins when you change your Deployment resource’s
YAML file and then use kubectl apply. Consider the
following definition, which deploys version 1 of an
application. Note that it uses the errm/versions Docker
image because it displays the version of the application
when you browse to its webpage, which makes it easy to
see which version you’re running.

HAProxy in Kubernetes 58

https://hub.docker.com/r/errm/versions

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 run: app

 name: app

spec:

 replicas: 5

 selector:

 matchLabels:

 run: app

 template:

 metadata:

 labels:

 run: app

 spec:

 containers:

 - name: app

 image: errm/versions:0.0.1

 ports:

 - containerPort: 3000

 readinessProbe:

 httpGet:

 path: /

 port: 3000

 initialDelaySeconds: 5

 periodSeconds: 5

 successThreshold: 1

The readinessProbe section tells Kubernetes to send an
HTTP request to the application five seconds after it has
started, and then every five seconds thereafter. No traffic

HAProxy in Kubernetes 59

is sent to the pod until a successful response is returned.
This is key to preventing downtime.

Did You Know? Consider tagging your container images
with version numbers, rather than using a tag like latest.
This allows you to keep track of the versions that are
deployed and manage the release of new versions.

Next, define a Service object that will categorize the pods
into a single group that the ingress controller will watch:

apiVersion: v1

kind: Service

metadata:

 name: app-service

spec:

 selector:

 run: app

 ports:

 - name: http

 port: 80

 protocol: TCP

 targetPort: 3000

Next, define an Ingress object. This configures how the
HAProxy Ingress Controller will route traffic to the pods:

HAProxy in Kubernetes 60

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: app-ingress

 namespace: default

spec:

 rules:

 - http:

 paths:

 - path: /

 backend:

 serviceName: app-service

 servicePort: 80

Use kubectl apply to deploy the pods, service and ingress:

$ kubectl apply -f app.yaml \

 -f app-service.yaml -f ingress.yaml

Version 1 of your application is now deployed. Run the
following command to see which port the HAProxy
Kubernetes Ingress Controller has mapped to port 80:

HAProxy in Kubernetes 61

$ kubectl get svc haproxy-ingress \

 -n haproxy-controller

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S)

AGE

haproxy-ingress NodePort 10.101.75.28 <none>

80:31179/TCP,443:31923/TCP,1024:30430/TCP 98s

You can then see that the application is exposed on port
31179. You can see it by visiting the Minikube IP address
http://192.168.99.100:31179 in your browser.

Let’s see how to upgrade it to version 2 next.

Upgrade Using a Rolling Update
After you have pushed a new version of your application to
your container repository, trigger a rolling update by
increasing the version number set on the Deployment
definition’s spec.template.spec.containers.image property.
This tells Kubernetes that the current, desired version of
your application has changed. In our example, since we’re
using a prebaked image, there’s already a version 2 set up
in the Docker Hub repository.

HAProxy in Kubernetes 62

image: errm/versions:0.0.2

Then, use kubectl apply to start the rollout:

$ kubectl apply -f app.yaml

You can check the status of the rollout by using the kubectl
rollout status command:

$ kubectl rollout status deployment app

deployment "app" successfully rolled out

Once completed, you can access the application again at
the same URL, http://192.168.99.100:31179. It shows you
a new web page signifying that version 2 has been
deployed.

HAProxy in Kubernetes 63

If you decide that the new version is faulty, you can revert
to the previous one by using the kubectl rollout undo
command, like this:

$ kubectl rollout undo deployment app

deployment.extensions/app rolled back

The HAProxy Kubernetes Ingress Controller detects pod
changes quickly and can switch back and forth between
versions without dropping connections. Rolling updates
aren’t the only way to accomplish highly-available services,
though. In the next section, you’ll learn about blue-green
deployments, which update all pods simultaneously.

Blue-Green Deployments
A blue-green deployment lets you replace an existing
version of your application across all pods at once. The
name, blue-green, was coined in the book Continuous
Delivery by Jez Humble and David Farley. Here’s how it
works:

1. Version 1 of your application is already deployed.
2. Push version 2 of your application to your

container image repository.
3. Deploy version 2 of your application to a new

group of pods. Both versions 1 and 2 pods are now
running in parallel. However, only version 1 is
exposed to external clients.

HAProxy in Kubernetes 64

https://gitlab.com/snippets/1846041

4. Run internal testing on version 2 and make sure it
is ready to go live.

5. Flip a switch and the ingress controller in front of
your clusters stops routing traffic to the version 1
pods and starts routing it to the version 2 pods.

This deployment pattern has a few advantages over a
rolling update. For one, at no time are there ever two
versions of your application accessible to external clients
at the same time. So, all users will receive the same
client-side Javascript files and be routed to a version of the
application that supports the API calls within those files. It
also simplifies upstream dependencies, such as database
schemas.

Another advantage is that it gives you time to test the new
version in a production environment before it goes live.
You control how long to wait before making the switch.
Meanwhile, you can verify that the application and its
dependencies function normally.

On the other hand, a blue-green deployment is
all-or-nothing. Unlike a rolling update, you aren’t able to
gradually roll out the new version. All users will receive the
update at the same time, although existing sessions will be
allowed to finish their work on the old instances. So, the
stakes are a bit higher that everything should work, once
you do initiate the change. It also requires allocating more
server resources, since you will need to run two copies of
every pod.

Luckily, the rollback procedure is just as easy: You simply
flip the switch again and the previous version is swapped

HAProxy in Kubernetes 65

back into place. That’s because the old version is still
running on the old pods. It is simply that traffic is no longer
being routed to them. When you’re confident that the new
version is here to stay, you can decommission those pods.
You’ll need to set up your original application in a slightly
different way when you expect to use a blue-green
deployment. There is more emphasis on using Kubernetes
metadata labels, which will become clear in the next
section.

Deploy the Original Application
Consider the following definition, which deploys version 1
of your application. Note its spec.selector section, which
specifies a label called version:

HAProxy in Kubernetes 66

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 run: app

 name: app-blue

spec:

 replicas: 1

 selector:

 matchLabels:

 run: app

 version: 0.0.1

 template:

 metadata:

 labels:

 run: app

 version: 0.0.1

 spec:

 containers:

 - name: app

 image: errm/versions:0.0.1

 ports:

 - containerPort: 3000

A Deployment object defines a spec.selector section that
matches the spec.template.metadata section. This is how a
Deployment tags pods and keeps track of them. This is the
key to setting up a blue-green deployment. By using
different labels, you can deploy multiple versions of the
same application. Here, the spec.selector.matchLabels
property is set to run=app,version=0.0.1. The version

HAProxy in Kubernetes 67

should match the version tag of your Docker image, for
convenience and simplicity.

The following Service definition targets that same selector:

apiVersion: v1

kind: Service

metadata:

 name: app-service

spec:

 selector:

 run: app

 version: 0.0.1

 ports:

 - name: http

 port: 80

 protocol: TCP

 targetPort: 3000

Next, use the following Ingress definition to expose the
version 1 pods to the world. It registers a route with the
HAProxy Kubernetes Ingress Controller:

HAProxy in Kubernetes 68

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: app-ingress

 namespace: default

spec:

 rules:

 - http:

 paths:

 - path: /

 backend:

 serviceName: app-service

 servicePort: 80

Apply everything using kubectl:

$ kubectl apply -f app-v1.yaml

$ kubectl apply -f app-service-bg.yaml

$ kubectl apply -f ingress.yaml

At this point, you can access the application at the HTTP
port exposed by the ingress controller:
http://192.168.99.100:31179. Now, let’s see how to use a
blue-green deployment to upgrade the version.

Upgrade Using a Blue-green
Deployment
Now that the blue version (i.e. version 1) is released, create
a green version of your Deployment object that will deploy
version 2. The YAML will be the same, except that you

HAProxy in Kubernetes 69

increase the value of the version label, as well as the
Docker image tag. Also note that the name of the
deployment is changed from app-blue to app-green, since
you cannot have two Deployments with the same name
that target different pods.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 run: app

 name: app-green

spec:

 replicas: 1

 selector:

 matchLabels:

 run: app

 version: 0.0.2

 template:

 metadata:

 labels:

 run: app

 version: 0.0.2

 spec:

 containers:

 - name: app

 image: errm/versions:0.0.2

 ports:

 - containerPort: 3000

Apply it with kubectl:

HAProxy in Kubernetes 70

$ kubectl apply -f app-v2.yaml

At this point, both blue (version 1) and green (version 2)
are deployed. Only the blue instance is receiving traffic,
though. To make the switch, update your Service
definition’s version selector so that it points to the new
version:

apiVersion: v1

kind: Service

metadata:

 name: app-service

spec:

 selector:

 run: app

 version: 0.0.2

 ports:

 - name: http

 port: 80

 protocol: TCP

 targetPort: 3000

Apply it with kubectl:

$ kubectl apply -f app-service.yaml

Check the application again and you will see that the new
version is live. If you need to roll back to the earlier
version, simply change the Service definition’s selector
back and reapply it. The HAProxy Kubernetes Ingress

HAProxy in Kubernetes 71

Controller detects these changes almost instantly and you
can swap back and forth to your heart’s content. There’s
no downtime during the cutover. Established TCP
connections will finish normally on the instance where they
began.

Testing the New Pods
You can also test the new version before it’s released by
registering a different ingress route that exposes the
application at a new URL path. First, create another Service
definition called test-service:

apiVersion: v1

kind: Service

metadata:

 name: test-service

 annotations:

 haproxy.org/path-rewrite: /

spec:

 selector:

 run: app

 version: 0.0.2

 ports:

 - name: http

 port: 80

 protocol: TCP

 targetPort: 3000

Note that we are including the path-rewrite annotation,
which rewrites the URL /test to / before it reaches the pod.

HAProxy in Kubernetes 72

Then, add a new route to your existing Ingress object that
exposes this service at the URL path /test, as shown:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: app-ingress

 namespace: default

 annotations:

 haproxy.org/ingress.class: "development"

spec:

 rules:

 - http:

 paths:

 - path: /

 backend:

 serviceName: app-service

 servicePort: 80

 - path: /test

 backend:

 serviceName: test-service

 servicePort: 80

This lets you check your application by visiting /test in your
browser.

Conclusion
The HAProxy Kubernetes Ingress Controller is powered by
the legendary HAProxy. Known to provide the utmost
performance, observability, and security, it features many

HAProxy in Kubernetes 73

benefits including SSL termination, rate limiting, and IP
whitelisting. When you deploy the ingress controller into
your cluster, it’s important to consider how your
applications will be upgraded later.

Two popular methods are rolling updates and blue-green
deployments. Rolling updates allow you to phase in a new
version gradually and it has first-class support in
Kubernetes. Blue-green deployments avoid the complexity
of having two versions at play at the same time and give
you a chance to test the change before going live. In either
case, the HAProxy Kubernetes Ingress Controller detects
these changes quickly and maintains uptime throughout.

HAProxy in Kubernetes 74

Where Next
Now that you've had an introduction to using the HAProxy
Kubernetes Ingress Controller, what should you do next?
First, know that it is continuously evolving and new
features are released at a regular cadence. Check out its
official GitHub repository to see the latest version and read
the official documentation.

The next thing is to appreciate that we've only scratched
the surface. On the whole, Kubernetes covers a lot of
ground, including authentication, resilience, deployments,
and job scheduling. HAProxy fills a niche for routing and
load balancing, but because the platform is extensible,
you'll likely find new use cases and potential integrations
between HAProxy and other components.

File an issue on GitHub or consider trying to solve an
existing issue. If you have questions, you'll find people
quick to help on the HAProxy Slack, where there's a
channel (#ingress-controller) dedicated to Kubernetes.
Perhaps you will be the next mentor to someone else who
is picking up Kubernetes for the first time. Whatever the
case, we're glad you've joined us.

HAProxy in Kubernetes 75

https://github.com/haproxytech/kubernetes-ingress
https://www.haproxy.com/documentation/kubernetes/latest/
https://slack.haproxy.org/

Visit us at https://www.haproxy.com

HAProxy in Kubernetes 76

https://www.haproxy.com/

	Table of Contents
	Introduction
	The Ingress Pattern
	Install the HAProxy Kubernetes Ingress Controller with Helm
	Routing Traffic
	TLS with Let's Encrypt
	Multi-tenant Kubernetes Clusters
	Kubernetes Deployment Patterns
	Where Next

