
Git
E V E R Y T H I N G Y O U N E E D T O K N O W A S A B E G I N N E R

M A D E B Y @ T A P A J Y O T I

Git helps to keep track of different
versions of a single code base by
tracking all changes and making it
very easy to collaborate of
humongous projects with ease

What is Git?

Before After

M A D E B Y @ T A P A J Y O T I

Installing Git
If you are on using Window, visit:
https://git-scm.com/download/win

If you are using a Linux-based system, run the
following command:

> sudo apt-get install git

To verify if git was properly installed, use:

> git --version

M A D E B Y @ T A P A J Y O T I

Initializing a Repo
Before using Git in your project, you need to
initialize a Repository.

To initialize one, use the following command:

> git init

Git creates a hidden directory called .git, which
stores all of the objects and refs that Git uses
and creates as a part of your project's history.

M A D E B Y @ T A P A J Y O T I

Staging
To commit, you need to specify the files whose
changes you want to save. This is done
by staging the changes. It is NOT required to
stage all files you modified, you can stage only
 the files whose changes you want to commit

To stage changes, use:

> git add <file 01 path> <file 02 path> <...>

or,

> git add .

M A D E B Y @ T A P A J Y O T I

Commiting
Finally, we come to committing changes.

To save the changes you have staged, use:

> git commit -m "<message>"

The commit command captures and saves a
snapshot of the project's currently staged
changes

M A D E B Y @ T A P A J Y O T I

Logs
Git log is a utility tool to review and read a
history of everything that happens to a
repository.

> git log

M A D E B Y @ T A P A J Y O T I

Undoing Changes
To err is man

It is quite possible that you might make some
mistake while working on a project. Wondering
how to fix them?

Git has two commands to undo changes you
made

Reset
Revert

1.
2.

M A D E B Y @ T A P A J Y O T I

Reset
Reset enables you to reset recent changes you
made. The command is:

Let's break down the command

> git reset --soft HEAD~1

git reset <reset type> HEAD~<number of commits to undo>

soft: uncommit and keep (staged) changes
hard: uncommit and delete changes

The types field allows the following:
1.
2.

M A D E B Y @ T A P A J Y O T I

Revert
Every commit is associated with a hash.

You can undo a specific commit using the revert command and its
hash

> git revert 8a11c5095f2dcd70b0bc8c66061a1368558a3abf

NOTE: An additional commit is added on reverting modifications

M A D E B Y @ T A P A J Y O T I

Git branches are effectively a pointer to a
snapshot of your changes. When you want to
make some modifications, like feature additions,
bug fixes, or documentation, no matter how big
or how small, you spawn a new branch to
encapsulate your changes.

The former convention was to call the base
branch master, but recently the name has been
changed to main. You can change the name or
the base branch as per your requirement though.

Branch

M A D E B Y @ T A P A J Y O T I

To create a new branch use:

Branch (continued)

> git checkout -b <new branch name>

To switch to an existing branch use:

> git checkout <branch name>

M A D E B Y @ T A P A J Y O T I

Merge
After working on a branch, you may need to
updating another branch with the code from the
current branch.

To merge changes from another branch, first,
move to the branch you want to update and use:

> git merge <update source branch name>

M A D E B Y @ T A P A J Y O T I

After merging branches if in both of the
branches, the same part of the same file was
updated, git doesn't know which change to keep
and which to discard.

So git creates a conflict message for manual
review.

Conflict

M A D E B Y @ T A P A J Y O T I

The conflict message outlines where the
conflict occurred as well as the current
(available in the branch) and incoming changes
(merging from another branch).

After resolving the conflict, you need to commit to save the
resolved merge.

Conflict (continued)

M A D E B Y @ T A P A J Y O T I

Fork
If you are contributing to a repository you don't
have write access to, you must Fork the
repository as the first step.

M A D E B Y @ T A P A J Y O T I

Clone
Now you have a personal copy of the repository.
Clone the repository using the command:

> git clone <clone link>

M A D E B Y @ T A P A J Y O T I

Push Directly
After making the required changes, you would
like to push the changes to the remote repository
for others to access it.

To push the changes to the remote repository
use:

> git push <remote> <branch name>

M A D E B Y @ T A P A J Y O T I

The remote is just a fancy term for the repository
alias. For the repo you clone from, it is set to
origin

Pull Request
If you don't have write access, you will need to
create a Pull Request in the source repository
where your changes will be reviewed and merged
by the owners or collaborators of the repository.

M A D E B Y @ T A P A J Y O T I

Medium

M A D E B Y @ T A P A J Y O T I

That's all folks!

HAPPY DEVELOPING!
Connect to me on:

LinkedIn
GitHub

